Imbench: Portabletoolsfor performance analysis

Larry Mc\oy
Silicon Graphics, Inc.

Carl Staelin
Hewlett-Packad Laboratories

Abstract of this benchmark suite obsolete or irvelat.

| mbench is a micro-benchmark suite designed to | mbench is already in widespread use at man
focus attention on the basic building blocks of ynan sites by both end users and system desigriersome
common system applications, such as databases, simu-cases| nbench has preided the data necessary to

lations, software delopment, and netarking. In discover and correct critical performance problems
almost all cases, the indilual tests are the result of that might hae gone unnoticedl nbench uncovered
analysis and isolation of a custonseectual perfor a problem in Surs memory management software that

mance problemThese tools can be, and currently are, made all pages map to the same location in the cache,
used to compare different system implementations effectively turning a 512 kilobyte (K) cache into a 4K
from different \endors. Inseveral cases, the bench- cache.

marks hae uncovered previously unknen bugs and | nbench measures only a systesnibility to
design flavs. Theresults hee shown a strong correla- transfer data between processmche, memorynet-
tion between memory system performance aretiati work, and disk. It does not measure other parts of the
performance. | mbench includes —an ensible system, such as the graphics subsystem, nor is it a
database of results from systems current as of late MIPS, MFLOPS, throughput, saturation, stress, graph-
1995. ics, or multiprocessor test suite. It is frequently run on
. multiprocessor (MP) systems to compare their perfor
1. Introduction mance aginst uniprocessor systems, but it does not
| mbench provides a suite of benchmarks that take alvantage of anmultiprocessor features.
attempt to measure the most commonly found perfor The benchmarks are written using standard,
mance bottlenecks in a wide range of system applica- portaple system interfaces and faciliies commonly
tions. Thesebottlenecks hee hkeen identified, iso- used by applications, sbmbench is portable and
lated, and reproduced in a set of small micro- comparable wer a wide set of Unix systems.
benchmarks, which measure system lateamtl band- | mbench has been run on AIX, BSDI, HP-UX, IRIX,

width of data mwement among the processor and | ijnux, FreeBSD, NetBSD, OSF/1, Solaris, and
memory network, file system, and disk. The intentis gyn0s. Brt of the suite has been run oninW
to produce numbers that real applications can repro- gows/NT as well.

duce, rather than the frequently quoted and sdrae

less reproducible marketing performance numbers. | mbench is freely distriuted under the Free

) Software Foundation$ General Public LicenseSfall-
The benchmarks focus on latgnand bandwidth man8g, with the additional restriction that results may

because performance issues are usually caused bype reported only if the benchmarks are unmodified.
lateng problems, bandwidth problems, or some com-

bination of the tw. Eachbenchmark exists because it 2 Prior work
captures some unique performance problem present in
one or more important applicationsor example, the
TCP lateng benchmark is an accurate predictor of the
Oracle distributed lock managerperformance, the
memory lateng benchmark gies astrong indication

of Verilog simulation performance, and the file system « 1/0 (disk) benchmarks: 10stone Pak90] wants to

Benchmarking and performance analysis is not a
new endeaor. There are too manother benchmark
suites to list all of them herédlMe comparel nhench
to a set of similar benchmarks.

lateng benchmark models a critical path in scde be an 1/0 benchmarkubactually measures the mem-
development. ory subsystem; all of the tests fit easily in the cache.
| mbench was devdoped to identify and\aluate IObench Wolman8g is a systematic file system and

system performance bottlenecks present in yman disk benchmark, bUt it is Complicated and unWieIdy
machines in 1993-1995. It is entirely possible that In [McVoy9l] we reviewed mawy I/O benchmarks and
computer architectures will ke danged and found them all lacking because yhok too long to
advanced enough in the xtefew years to render parts ~ fun and were too compiea olution to a fairly simple

problem. V¢ wrote a small, simple I/O benchmark,

| nrdd that measures sequential and random HO f
faster than either IOstone or |IObenchs part of
[Mcvoy91] the results froml ndd were checkd
against 10bench (as well as some other Sun internal
I/O benchmarks).| ndd proved to be nore accurate
than ay of the other benchmarksAt least one disk
vendor routinely usebndd to do performance testing
of its disk drves.

Chen and Pattersogtien93, Chengameasure 1/O per
formance under a variety oforkloads that are auto-
matically varied to test the range of the systepet-
formance. Ouefforts differ in that we are more inter
ested in the CPUwerhead of a single request, rather
than the capacity of the system as a whole.

* Berkeley Software Distribution’s microbench
suite: The BSD effort generated anxtensie st of

test benchmarks to do regression testing (both quality
and performance) of the BSD releas®¢e dd not use

this as a basis for our work (although we used ideas)
for the following reasons: (a) missing tests — such as
memory lateng, (b) too man tests, the results tended
to be obscured under a mountain of numbers, and (c)
wrong copright — we wanted the Free Sofive
Foundation$ General Public License.

* Ousterhout’'s Operating System benchmark:
[Ousterhout9pproposes seeral system benchmarks to
measure system call latgneontext switch time, and
file system performancelNe wsed the same ideas as a
basis for our wrk, while trying to go arther We
measured a more complete set of privedj including
some hardare measurements; went into greater depth
on some of the tests, such as cenhswitching; and
went to great lengths to malkhe benchmark portable
and extensible.

» Networking benchmarks: Net per f measures net-
working bandwidth and lategcand was written by
Rick Jones of Helett-Packard.l mbench includes a
smaller less compbe benchmark that produces similar
results.

tt cp is a widely used benchmark in the Internet com-
munity. Our version of the same benchmark routinely
delivers bandwidth numbers that are within 2% of the
numbers quoted byt cp.

* McCalpin’s stream benchmark: [McCalpin9g has
memory bandwidth measurements and results for a
large number of high-end system$Ve dd not use
these because we diseced them only after we had
results using ourersions. VE will probably include
McCalpin’s benchmarks ih mbench in the future.

In summary we mlled our own because we
wanted simple, portable benchmarks that accurately
measured a wideaviety of operations that we con-
sider crucial to performance on todays/stems.
While portions of other benchmark suites include sim-
ilar work, none includes all of it, fe are as portable,

and almost all are far more comylelLessfilling,
tastes great.

3. Benchmarking notes

3.1. Sizing the benchmarks

The proper sizing of arious benchmark parame-
ters is crucial to ensure that the benchmark is measur
ing the right component of system performan&er
example, memory-to-memory cpgpeeds are dramat-
ically affected by the location of the data: if the size
parameter is too small so the data is in a cache, then
the performance may be as much as ten tirastef
than if the data is in memorn the other hand, if the
memory size parameter is too big so the data is paged
to disk, then performance may bevgda to such an
extent that the benchmark seems tovandinish.’

| mbench takes the follaving approach to the
cache and memory size issues:

» All of the benchmarks that could befeafted by
cache size are run in a loop, with increasing sizes (typ-
ically powers of two) until some maximum size is
reached. Theesults may then be plotted to see where
the benchmark no longer fits in the cache.

* The benchmarkerifies that there is sufficient mem-
ory to run all of the benchmarks in main memo#y
small test program allocates as much memory as it
can, clears the memgrgnd then strides through that
memory a page at a time, timing each refereri€e.
ary reference takes more than afmicroseconds, the
page is no longer in memoryrhe test program starts
small and works forard until either enough memory
is seen as present or the memory limit is reached.

3.2. Compiletimeissues

The GNU C compilergcc, is the compiler we
chose because itage the most reproducible results
across platforms.When gcc was ot present, we
used the endor-suppliectcc. All of the benchmarks
were compiled with optimization- O except the
benchmarks that calculate clock speed and the xtonte
switch times, which must be compiled without opti-
mization in order to produce correct resulido other
optimization flags were enabled because vented
results that wuld be commonly seen by application
writers.

All of the benchmarks were linked using the
default manner of the target systerRor most if not
all systems, the binaries were latk using shared
libraries.

3.3. Multiprocessor issues

All of the multiprocessor systems ran the bench-
marks in the same way as the uniprocessor systems.
Some systems allousers to pin processes to a partic-
ular CPU, which sometimes results in better cache
reuse. W do rot pin processes because it defeats the

MP scheduler In certain cases, this decision yields
interesting results discussed later.

3.4. Timing issues

» Clock resolution: The benchmarks measure the
elapsed time by reading the system clock via the
get ti meof day interface. Onsome systems this
interface has a resolution of 10 milliseconds, a long
time relatve o mary of the benchmarks which &
results measured in tens to hundreds of microseconds.
To compensate for the coarse clock resolution, the
benchmarks are hand-tuned to measureynugpera-
tions within a single time inteal lasting for man
clock ticks. Typically, this is done by xecuting the
operation in a small loop, sometimes unrolled if the
operation is exceedingly fast, and then dividing the
loop time by the loop count.

« Caching: If the benchmark expects the data to be in
the cache, the benchmark is typically runvesal
times; only the last result is recorded.

If the benchmark does not want to measure cache per
formance it sets the size parametegédarthan the
cache. Br example, thbcopy benchmark by dedlt
copies 8 mgabytes to 8 megabytes, which lagely
defeats ay second-leel cache in use today(Note
that the benchmarks are not trying to defeat the file or
process page cache, only the hardware caches.)

» Variability: The results of some benchmarks, most
notably the conta switch benchmark, had a tendgnc

to vary quite a bit, up to 30%We suspect that the
operating system is not using the same set g$ipal
pages each time a process is created and we are seein
the effects of collisions in the external caché&¥e
compensate by running the benchmark in a loop and
taking the minimum result.Users interested in the
most accurate data are advised ¢oify the results on
their own platforms.

Many of the results included in the database were

donated by users and were not created by the authors.

Good benchmarking practice suggests that one should

run the benchmarks as the only user of a machine,
without other resource intensi a unpredictable pro-
cesses or daemons.

3.5. Using thelmbench database

| mbench includes a database of results that is
useful for comparison purposes. It is quite easy to
build the source, run the benchmark, and produce a
table of results that includes the run. All of the tables
in this paper were produced from the database
included inl mbench. This paper is also included
with | mbench and may be reproduced incorporating
new results. Br more information, consult the file
| mbench- HOAMOin thel nbench distribution.

4. Systemstested

| mbench has been run on a widanety of plat-
forms. This paper includes results from a representa-
tive aubset of machines and operating syste@em-
parisons between similar hardware runnindgedént
operating systems can bery illuminating, and we
have included a fes examples in our results.

The systems are briefly characterized ablé 1.
Please note that the list prices are very approximate as
is the year of introductionThe SPECInt92 numbers
are a little suspect since some vendorsehkeen
“ optimizing” for certain parts of SPECWe try and
guote the original SPECInt92 numbers where we can.

4.1. Readingtheresult tables

Throughout the rest of this papewrve pesent
tables of results for manof the benchmarks. All of

%ne tables are sorted, from best torgi. Somdables

have multiple columns of results and those tables are
sorted on only one of the column3he sorted col-
umn’s heading will be irbold.

5. Bandwidth benchmarks

By bandwidth, we mean the rate at which a partic-
ular facility can mee data. W atempt to measure
the data meement ability of a number of ddrent

Name \énder Multi Operating SPEC List

used &model orUni System CPU Mhz Year Int92 price
IBM PowerPC IBM43P Uni AIX 3.? MPC604 133 '95 176 15k
IBM Power2 IBM 990 Uni AlIX 4.? Pover2 71 '93 126 110k
FreeBSD/i586 ASUPS55TPAXE Uni FreeBSD 2.1 Pentium 133 95 190 3k
HP K210 HP 9000/859 MP HP-UXB.10.01 R 7200 120 '95 167 35k
SGI Challenge SGI Challenge MP IRIX 6.2« R4400 200 '94 140 80k
SGI Indigo2 SGI Indigo2 Uni IRIX 5.3 R4400 200 '94 135 15k
Linux/Alpha DECCabriolet Uni Linux 1.3.38 Alpha 21064A 275 '94 189 9k
Linux/i586 Triton/EDO RAM Uni Linux 1.3.28 Pentium 120 '95 155 5k
Linux/i686 IntelAlder Uni Linux 1.3.37 Pentium Pro 167 '95 ~ 280 7k
DEC Alpha@150 DEC 3000/500 Uni OSF13.0 Alpha21064 150 '93 84 35k
DEC Alpha@300 DEC 8400 5/300 MP OSF13.2 Alpha21164 300 '95 341 ? 50k
Sun Ultral Sun Ultral Uni Sun0%.5 UltraSRRC 167 '95 250 21k
Sun SC1000 Sun SC1000 MP Sun0%.548 SuperSRRC 50 '92 65 35k
Solaris/i686 InteAlder Uni Sun0S 5.5.1 Pentium Pro 133 '95 ~215 5k
Unixware/i686 IntelAurora Uni Unixware 5.4.2 Pentium Pro 167 '95 ~ 280 7k

Table 1. System descriptions.

facilities: library bcopy, hand-unrolled bcopy,
direct-memory read and write (no ¢amgy), pipes,
TCP sockets, theead interface, and themap inter-
face.

5.1. Memory bandwidth

Data meement is fundamental to groperating
system. Irthe past, performance was frequently mea-
sured in MFLOPS because floating point units were
slow enough that microprocessor systems were rarely
limited by memory bandwidthToday, floating point
units are usually muctaster than memory bandwidth,
so man current MFLOP ratings can not be main-
tained using memory-resident data;treee “cache
only” ratings.

We neasure the ability to cgpread, and write
data wer a varying set of sizes. There are too man
results to report all of them here, so we concentrate on
large memory transfers.

We neasure cop bandwidth two ways. Thefirst
is the usetevd library bcopy interface. Thesecond
is a hand-unrolled loop that loads and stores aligned
8-byte words. Inboth cases, we took care to ensure
that the source and destination locations would not
map to the same lines if theyaof the caches were
direct-mapped. Irorder to test memory bandwidth
rather than cache bandwidth, both benchmarky cop
an 8M area to another 8M area(As secondary
caches reach 16M, these benchmarks wikehia be
resized to reduce caching effects.)

The copy results actually represent one-half to
one-third of the memory bandwidth used to obtain
those results since we are reading and writing mem-
ory. If the cache line size is larger than therdv
stored, then the written cache line will typically be
read before it is writtenThe actual amount of mem-

ory bandwidth used varies because some architectures

have gecial instructions specifically designed for the
bcopy function. Thosearchitectures will mee wice

in a load and an add for eaclond of memory The

add is an integer add that completes in one cycle on all
of the processorsGiven that todays processor typi-
cally cycles at 10 or feer nanoseconds (ns) and that
memory is typically 200-1,000 ns per cache line, the
results reported here should be dominated by the
memory subsystem, not the processor add unit.

The memory contents are added up because almost
all C compilers would optimize out the whole loop
when optimization was turned on, anduwld generate
far too mary instructions without optimizationThe
solution is to add up the data and pass the result as an
unused argument to the “finish timingunction.

Memory reads represent about one-third to one-
half of the bcopy work, and we expect that pure
reads should run at roughly twice the speebaafpy.
Exceptions to this rule should be studied, facemp-
tions indicate a bug in the benchmarks, a problem in
bcopy, or @me unusual hardware.

Bcopy Memory
System unrolled libc read write
IBM Power2 242 171 205 364
Sun Ultral 85 167 | 129 152
DEC Alpha@300 85 80 120 123
HP K210 78 57 117 126
Unixware/i686 65 55 214 86
Solaris/i686 52 48 159 71
DEC Alpha@150 46 45 79 91
Linux/i686 42 57 205 56
FreeBSD/i586 39 42 73 83
Linux/Alpha 39 39 73 71
Linux/i586 38 42 74 75
SGI Challenge 35 36 65 67
SGl Indigo2 31 32 69 66
IBM PowerPC 21 21 63 26
Sun SC1000 17 15 38 31

Table 2. Memory bandwidth (MB/s)

Memory writing is measured by an unrolled loop

as much memory as reported by this benchmark; less that stores a value into an integer (typically a 4 byte

adwanced architectures m® tree times as much

integer) and then increments the point&@he proces-

memory: the memory read, the memory read because SOr cost of each memory operation is approximately

it is about to be werwritten, and the memaory written.

The bcopy results reported in able 2 may be
correlated with John McCalp®m’ stream
[McCalpin9g benchmark results in the following man-
ner: thest r eambenchmark reports all of the mem-
ory moved whereas thécopy benchmark reports the
bytes copied. So our numbers should be approxi-
mately one-half to one-third of his numbers.

Memory reading is measured by an unrolled loop
that sums up a series of iges. Onmost (perhaps
all) systems measured the integer size is 4 bylés.
loop is unrolled such that most compilers generate

the same as the cost in the read case.

The numbers reported irallle 2 are not the wa
hardware speed in some case€khe Pover? is capa-
ble of up to 800M/sec read ratégcfCalpin9g and HP
PA RISC (and other prefetching) systems also do bet-
ter if higher leels of code optimization used and/or
the code is hand tuned.

The Sun libc bcopin Table 2 is better because
they use a hardware specific bgopoutine that uses
instructions ne in SPARC V9 that were added specif-
ically for memory mgement.

The Pentium Pro read rate in Table 2 is much

code that uses a constant offset with the load, resulting higher than the write rate because, according to Intel,

1Some of the PCs had less than 16M wdilable
memory; those machines copied 4M.

2 someone described this machine as a $1,000 pro-
cessor on a $99,000 memory subsystem.

the write transaction turns into a read followed by a
write to maintain cache consistgrfor MP systems.

5.2. IPC bandwidth

Interprocess communication bandwidth is fre-
guently a performance issu®&lany Unix applications
are composed of geral processes communicating
through pipes or TCP soets. Examplednclude the
grof f documentation system that prepared this
paper the X W ndow Syst em remote file access,
andWorl d W de Wb servers.

Unix pipes are an interprocess communication
mechanism implemented as a one-way byte stream.

Each end of the stream has an associated file descrip-

tor; one is the write descriptor and the other the read
descriptor TCP soclkts are similar to pipesxeept
they are bidirectional and can cross machine bound-
aries.

Pipe bandwidth is measured by creating fwo-
cesses, a writer and a readehich transfer 50M of

bcopy hardware unailable to the C library.

It is interesting to compare pipes with TCP
because the TCP benchmark is identical to the pipe
benchmark except for the transport mechanisde-
ally, the TCP bandwidth would be as good as the pipe
bandwidth. Itis not widely knavn that the majority of
the TCP cost is in thecopy, the checksum, and the
network interface drier. The checksum and the i
may be safely eliminated in the loopback case and if
the costs hae tkeen eliminated, then TCP should be
just as &st as pipes. From the pipe and TCP results in
Table 3, it is easy to see that Solaris and HP-U¥eha
done this optimization.

Bcopy rates in Table 3 can be lower than pipe rates
because the pipe transfers are done in 6dffets, a
size that frequently fits in caches, while the hcop
typically an 8M-to-8M cop, which does not fit in the
cache.

In Table 3, the SGI Indigo2, a uniprocessires
better than the SGI MP on pipe bandwidth because of

data in 64K transfers. The transfer size was chosen so caching effects - in the UP case, both processes share

that the werhead of system calls and context switch-
ing would not dominate the benchmark tim&he
reader prints the timing results, which guarantees that
all data has been med before the timing is finished.

TCP bandwidth is measured similarxcept the

the cache; on the MIeach process is communicating
with a different cache.

All of the TCP results in Table 3 are in loopback
mode — that is both ends of the socket are on the
same machinelt was impossible to get remote net-

data is transferred in 1M page aligned transfers instead working results for all the machines included in this

of 64K transfers.If the TCP implementation supports
it, the send and reaa cket huffers are enlared to
1M, instead of the default 4-60K\e havefound that
setting the transfer size equal to the sockéfeb size
produces the greatest throughpuérahe most imple-
mentations.

System Libdcopy pipe TCP
HP K210 57 93 34
IBM Power2 171 84 10
Linux/i686 57 73 15
Linux/Alpha 39 73 9
Unixware/i686 55 63 -1
Sun Ultral 167 61 51
DEC Alpha@300 80 46 11
Solaris/i686 48 38 20
DEC Alpha@150 45 35 9
SGI Indigo2 32 34 22
Linux/i586 42 34 7
IBM PowerPC 21 30 17
FreeBSD/i586 42 23 13
SGI Challenge 36 17 31
Sun SC1000 15 9 11

Table 3. Pipeand local TCP bandwidth (MB/s)

bcopy is important to this test because the pipe
write/read is typically implemented asbaopy into
the kernel from the writer and therbaopy from the
kernel to the readerldeally these results would be
approximately one-half of thbcopy results. ltis
possible for the érnelbcopy to be faster than the C
library bcopy since the kernel may ha acess to

paper We ae interested in receiving more results for
identical machines with a dedicated netk connect-
ing them. The results we & for over the wire TCP
bandwidth are shown belo

System Netwrk TCP bandwidth
SGI PaverChallenge hippi 79.3
Sun Ultral 100baseT 9.4
HP 9000/735 fddi 8.8
FreeBSD/i586 100baseT 7.9
SGl Indigo2 10baseT g
HP 9000/735 10baseT 9
Linux/i586 @90Mhz 10baseT 7

Table 4. Remote TCP bandwidth (MB/s)

The SGI using 100MB/s Hippi is by far thastest
in Table 4. The SGI Hippi interface has haede/sup-
port for TCP checksums and the IRIX operating sys-
tem uses virtual memory tricks tecid copying data
as much as possiblézor larger transfers, SGI Hippi
has reached 92MB/s/er TCP.

100baseT is looking quite competdiwhen com-
pared to FDDI in &ble 4, gen though FDDI has
paclets that are almost three timegylr We wonder
how long it will be before we see gigabit ethernet
interfaces.

5.3. Cached I/O bandwidth

Experience has shown us that reusing data in the
file system page cache can be a performance issue.
This section measures that operation througb tw

interfacesr ead andnmmap. The benchmark here is
not an /O benchmark in that no disk ait}i is
involved. W& wanted to measure thevewhead of
reusing data, anverhead that is CPU inteng, rather
than disk intensie.

Ther ead interface copies data from therel's
file system page cache into the processffer, using
64K huffers. Thetransfer size was chosen to mini-
mize the kernel entryverhead while remaining realis-
tically sized.

The difference between theeopy and ther ead
benchmarks is the cost of the file and virtual memory
system gerhead. Inmost systems, thiecopy speed
should be faster than thead speed. Thexceptions
usually hae hardware specifically designed for the
bcopy function and that hardware may beaitable
only to the operating system.

The r ead benchmark is implemented by reread-
ing a file (typically 8M) in 64K bffers. Eactbuffer is
summed as a series of ige¥s in the user process.
The summing is done for tweasons: for an apples-
to-apples comparison the memory-mapped benchmark
needs to touch all the data, and the file system can
sometimes transfer data into memoagtér than the
processor can read the dateor example,SGIs XFS
can mae data into memory at rates in excess of 500M
per second, but it can w® data into the cache at only
68M per second. The intent is to measure perfor
mance deliered to the application, not DMA perfor
mance to memory.

Libc File | Memory File
System bcop read read mmapy
IBM Power2 171 187 205 106
HP K210 57 88 117 52
Sun Ultral 167 85 129 101
DEC Alpha@300 80 67 120 78
Unixware/i686 55 53 214 198
Solaris/i686 48 52 159 94
Linux/i686 57 46 205 34
DEC Alpha@150 45 40 79 50
IBM PowerPC 21 40 63 51
SGI Challenge 36 36 65 56
SGI Indigo2 32 32 69 44
FreeBSD/i586 42 30 73 53
Linux/Alpha 39 24 73 18
Linux/i586 42 23 74 9
Sun SC1000 15 20 38 28

Table 5. Filevs. memory bandwidth (M B/s)

The mmap interface provides a ay to access the
kernel's file cache without copying the datalhe
nmap benchmark is implemented by mapping the
entire file (typically 8M) into the processaldress
space. Thdile is then summed to force the data into
the cache.

In Table 5, a good system will V&File read as
fast as (or een faster than).ibc bcopybecause as the
file system werhead goes to zero, the file reread case

is virtually the same as the librapgopy case. Huw-
eva, file reread can be faster because thieéd may
have acess tdcopy assist hardware novailable to

the C library Ideally, File mmapperformance should
approachMemory ead performance, tt nmap is
often dramatically wrse. Judgindpy the results, this
looks to be a potential area for operating system
improvements.

In Table 5 the Reer2 does better on file reread
than bcog because it takes full advantage of the
memory subsystem from inside therkel. Themmap
reread is probably sleer because of the lower clock
rate; the page faults start to shap as a gnificant
cost.

It is surprising that the Sun Ultralaw able to
bcopy at the high rates shn in Table 2 but did not
shaw those rates for file reread in Table 5. HP has the
opposite problem, tlyeget file reread dster than
bcopy, perhaps because therkelbcopy has access
to hardware support.

The Unixware system has outstanding mmap
reread rates, better than systems of substantially
higher cost. Linux needs to do some work on the
nmrap code.

6. Latency measurements

Lateny is an often-overlooked area of perfer
mance problems, possibly because resolving lgtenc
issues is frequently much harder than resolving band-
width issues.For example, memory bandwidth may
be increased by making wider cache lines and increas-
ing memory ‘width’’ and interleae, but memory
latengy can be impreed only by shortening paths or
increasing (successful) prefetching. The first step
toward improving lateng is understanding the current
latencies in a system.

The lateng measurements included in this suite
are memory lateng basic operating system entry cost,
signal handling cost, process creation times, stbnte
switching, interprocess communication, file system
lateng, and disk lateny.

6.1. Memory read latency background

In this section, we xpend considerable effort to
define the different memory latencies and xplain
and justify our benchmark. The background is a bit
tedious It important, since we belie the memory
lateny measurements to be one of the most thought-
provoking and useful measurementd imbench.

The most basic latepcmeasurement is memory
lateng since most of the other latepeneasurements
can be expressed in terms of memory lateneor
example, context switches require saving the current
process state and loading the state of thx¢ m®cess.
However, memory lateng is rarely accurately mea-
sured and frequently misunderstood.

Memory read latenyc has mawg definitions; the
most common, in increasing time ordare memory
chip g/cle time, processepins-to-memory-and-back
time, load-in-a-acuum time, and back-to-back-load
time.

 Memory chip cycle latency: Memory chips are

of at least the load-in-a-vacuum latgnc

Back-to-back-load latency: Back-to-back-load
lateny is the time that each load & assuming that
the instructions before and after are also cache-
missing loads. Back-to-back loads may taklonger
than loads in aacuum for the following reason: man

rated in nanoseconds; typical speeds are around 60ns.systems implement something knowncaisical word

A general oerview on DRAM architecture may be
found in Hennessy9p The specific information we
describe here is fronirgshiba94 and pertains to the
THM361020AS-60 module andTC514400AJS DRAM
used inSGI workstations. Thes0ns time is the time
from RAS assertion to the when the data will heik
able on theDRAM pins (assumingCAS access time
requirements were met)While it is possible to get
data out of @RAM in 60ns, that is not all of the time
involved. Thereis a precharge time that must occur
after every access.[Toshiba94 quotes 110ns as the
random read or write cycle time and this time is more
representatie d the cycle time.

* Pin-to-pin latency: This number represents the time
needed for the memory request tosetdrom the pro-
cessors pns to the memory subsystem and back
again. Mary vendors hee wsed the pin-to-pin defini-
tion of memory latengcin their reports.For example,
[Fenwick93 while describing theDEC 8400 quotes
memory latencies of 265ns; a careful reading of that
paper shows that these are pin-to-pin numbéns.
spite of the historical precedent iandor reports, this
definition of memory latencis misleading since it
ignores actual delays seen when a load instruction is
immediately follaved by a use of the data being
loaded. Thenumber of additional cycles inside the
processor can be significant and grows more signifi-
cant with todays highly pipelined architectures.

It is worth noting that the pin-to-pin numbers
include the amount of time it takes to charge the lines
going to theSIMMs, a time that increases with the
(potential) number ofSIMMs in a ystem. More
SIMMs mean more capacitance which requires in
longer charge timesThis is one reason wtpersonal
computers frequently ke better memory latencies
than workstations: the PCs typicallyMedess memory
capacity.

» Load-in-a-vacuum latency: A load in a vacuum is
the time that the processor will wait for one load that
must be fetched from main memory (i.e., a cache
miss). The“vacuum’ means that there is no other
activity on the system bus, including no other loads.
While this number is frequently used as the memory
latengy, it is not very useful. It is basically a “not to
exceed’ number important only for marketing rea-
sons. Somarchitects point out that since most pro-
cessors implement nonblocking loads (the load does
not cause a stall until the data is used), the peadei
load lateng may be much less that the real latenc
When pressed, meever, most will admit that cache
misses occur in bursts, resulting in pevedilatencies

first, which means that the subblock of the cache line
that contains the @rd being loaded is dekred to the
processor before the entire cache line has been
brought into the cachdf another load occurs quickly
enough after the processor gets restarted from the cur
rent load, the second load may stall because the cache
is still busy filling the cache line for the previous load.
On some systems, such as the current implementation
of UltraSPARC, the di€rence between back to back
and load in a vacuum is about 35%.

| mbench measures back-to-back-load latgnc
because it is the only measurement that may be easily
measured from software and because we feel that it is
what most software gelopers consider to be memory
lateng. Consider the following C code fragment:

p = head,;
whi | e (p->p_next)
p = p->p_next;

On aDEC Alpha, the loop part turns into three instruc-
tions, including the loadA 300 Mhz processor has a
3.33ns gcle time, so the loop coulkecute in slightly
less than 10nsHowever, the load itself takes 400ns
on a 300 MhDEC 8400. Inother words, the instruc-
tions cost 10ns but the load stalls for 408nother
way to look at it is that 400/3.3, or 121, nondependent,
nonloading instructions following the loadould be
needed to hide the load latgncdBecause superscalar
processors typically xecute multiple operations per
clock gscle, they need ®en more useful operations
between cache misses teep the processor from
stalling.

This benchmark illuminates the tradfsofn pro-
cessor cache design. Architectslilkrge cache lines,
up to 64 bytes or so, because the prefetch effect of
gahering a whole line increases hit rateegi reason-
able spatial locality Small stride sizes ha hgh spa-
tial locality and should hee Hgher performance,ut
large stride sizes ha poor spatial locality causing the
system to prefetch useless datdo the benchmark
provides the follaving insight into ngative dfects of
large line prefetch:

» Multi-cycle fill operations are typically atomic
evants at the caches, and sometimes block other cache
accesses until thgcomplete.

e Caches are typically single-ported. Having ayéar

line prefetch of unused data causetrae bandwidth
demands at the cache, and can cause increased access
latengy for normal cache accesses.

In summarywe kelieve that processors are sast
that the serage load latencfor cache misses will be
closer to the back-to-back-load number than to the
load-in-a-\acuum number We ae hopeful that the
industry will standardize on this definition of memory
lateng.

6.2. Memory read latency

The entire memory hierarghcan be measured,
including on-board data cache latgrand size, gter-
nal data cache latepcand size, and main memory
lateng. Instruction caches are not measurdd.B
miss lateng can also be measured, as 8adedra9d,
but we gopped at main memaryMeasuring TLB
miss time is problematic becausefeliént systems
map diferent amounts of memory with their TLB
hardware.

The benchmark aries two parameters, array size
and array strideFor each size, a list of pointers is cre-
ated for all of the different strides. Then the list is

walked thus:
nov r4,(rd4) # Ccode: p = *p;

The time to do about 1,000,000 loads (the list wraps)

DEC alpha@182mhz memory latencies

500
450
400
350
300
250
200
150
100
50
R N B IR IR IR I I

8 10 12 14 16 18 20 22 24

<OSDODO o

5 —
NOoOSO0O0ODdDWMWOS S

log2(Array size)

Figurel. Memory latency
missing a cache, while others add another cache to the

is measured and reported. The time reported is pure hierarcly. For example, the Alpha 8400 hasohan-

lateng time and may be zeroven though the load
instruction does notxecute in zero time.Zero is

defined as one clock cycle; in otheonds, the time
reported isonly memory lateng time, as it does not
include the instructionxecution time. It is assumed

that all processors can do a load instruction in one pro-

cessor gcle (not counting stalls). In other words, if

the processor cache load time is 60ns on a 20ns pro-

cessor the load lateng reported would be 40ns, the
additional 20ns is for the load instruction itseRro-

board caches, one 8K and the other 96K.

The cache line size can be ded by comparing
cunes and noticing which strides amsfer than main
memory times. The smallest stride that is the same as
main memory speed is likely to be the cache line size
because the strides that asestér than memory are
getting more than one hit per cache line.

Figure 1 shaws memory latencies on a nicely
made machine, BREC Alpha. We wse this machine as
the example because it shows the latencies and sizes

cessors that can manage to get the load address out toyf the on-chip leel 1 and motherboard el 2 caches,
the address pins before the end of the load cycle get ang pecause it has good all-around numbers, espe-

some free time in this benchmark (we ddaow of
ary processors that do that).

This benchmark has beealidated by logic ana-
lyzer measurements on &l Indy by Ron Minnich
while he was at the Maryland Supercomputer
Research Center.

Results from the memory latgnbenchmark are

cially considering it can support a 4Mvé 2 cache.
The on-board cache is'2bytes or 8K, while the
external cache is' bytes or 512K.

Table 6 shavs the cache size, cache latgnand
main memory latencas etracted from the memory
lateny graphs. Thegraphs and the tools foxteact-
ing the data are included withmbench. It is worth-

plotted as a series of data sets as shown in Figure 1. while to plot all of the graphs and examine them since
Each data set represents a stride size, with the array the table is missing some details, such asnbe

size varying from 512 bytes up to 8M or morEhe
curves contain a series of horizontal plateaus, where
each plateau represents aelan the memory hierar
chy. The point where each plateau ends and the line
rises marks the end of that portion of the memory hier
archy (e.g., external cacheMost machines he sm-

ilar memory hierarchies: on-board cachegeenal
cache, main memoryand main memory plus TLB
miss costs. There ar@awnations: some processors are

3 In retrospect, this was a bad idea because we calcu-
late the clock rate to get the instructioreaution time.
If the clock rate is off, so is the load time.

Alpha 8400 processar'scond 96K on-chip cache.

We 2rted Tble 6 on leel 2 cache latengbecause
we think that may applications will fit in the lgel 2
cache. ThedP and IBM systems kia aly one level
of cache so we count that as bothelel and level 2.
Those tw systems hee remarkable cache perfor
mance for caches of that size. In both cases, the cache
delivers data in one clock cycle after the load instruc-
tion.

HP systems usually focus ondarcaches as close
as possible to the processéx older HP multiproces-
sor system, the 9000/890, has a 4M, split 1&D, &'w

call table towr i t e, verify the user area as readable,

Levell Level 2 look up the file descriptor to get the vnode, call the
cache cache ~ Memory vnodes write function, and then return.
System Clk.lat. size lat. size lateng
HP K210 8 8 256K -- - 349 System systernalll
IBM Power2 14 13 256K - -- 260 Linux/Alpha 2
Unixware/i686 5 5 8 25 256K 175 Linux/i586 2
Linux/i686 510 8K 30 256K 179 Linux/i686 4
Sun Ultral 6 6 16K 42 512K 270 Sun Ultral 5
Linux/Alpha 3 6 8 46 %K 357 Unixware/i686 5
Solaris/i686 714 8K ?48 256K 281 FreeBSD/i586 6
SGI Indigo2 5 8 16K 64 2M 1170 Solaris/i686 7
SGI Challenge 5 8 16K 64 4M 1189 DEC Alpha@300 9
DEC Alpha@300 3 3 & 66 4M 400 Sun SC1000 9
DEC Alpha@150 6 12 8K 67 512K 291 HP K210 10
FreeBSD/i586 7 7 8 95 512K 182 SGI Indigo2 11
Linux/i586 8 8 8 107 256K 150 DEC Alpha@150 11
Sun SC1000 20 20 8K 140 1M 1236 IBM PowerPC 12
IBM PowerPC 7 6 16K 164 ?512K 394 IBM Power2 16
SGI Challenge 24
Table6. Cache and memory latency (ns)

set associate ache, accessible in one clock (16ns). rable7. Simple system call time (microseconds)

That system is primarily a database server. Linux is the clear winner in the system call time.

The IBM focus is on lov lateny, high bandwidth The reasons are tfold: Linux is a uniprocessor oper
memory The IBM memory subsystem is good ating system, without gnMIP overhead, and Linux is
because all of memory is close to the procedadr a amall operating system, without all of theeatures”
has the weakness that it is extremely difficultvtohee accumulated by the commercial offers.
the design to a multiprocessor system. Unixware and Solaris are doing quite wellyeagi

The 586 and PowerPC motherboardsehapite that the are both #irly large, commercially oriented
poor second kel caches, the caches are not substan- operating systems with a tgr accumulation offea-
tially better than main memory. tures”

The Pentium Pro and Sun Ultra secondelle . .
caches are of medium speed at 5-6 clocks Igtenc 6.4. Signal handling cost

each. 5-6clocks seemsabt until it is compared Signals in Unix are a way to tell another process to
agpinst the HP and IBM oneycle lateny caches of handle an eent. The are to processes as interrupts
similar size. Given the tight integration of the Pen- gre to the CPU.

tium Pro level 2 cache, itis surprising that it has such Signal handling is often critical to layered systems.

high latencies.) Some applications, such as databases, softwaset de
The 300Mhz DEC Alpha has a rather high 22 opment environments, and threading libraries/ioi®

clock lateng to the second leel cache which is prob- an operating system-kklayer on top of the operating
ably one of the reasons that yheeeded a 96K iel system, making signal handling a critical path in ynan
1.5 cache. SGI and DECVwsed lage second el of these applications.

caches to hide their long latgrizom main memory. | mbench measure both signal installation and

) signal dispatching in tev separate loops, within the
6.3. Operating system entry context of one processlt measures signal handling by
Entry into the operating system is required for installing a signal handler and then repeatedly sending
mary system fcilities. Whercalculating the cost of a itself the signal.

facility, it is useful to knev how expensve it is to per- Table 8 shows the signal handling costote that
form a nontrivial entry into the operating system. there are no conté switches in this benchmark; the
We measure nontvial entry into the system by signal goes to the same process that generated the sig-

repeatedly writing one word td dev/null, a nal. In real applications, the signals usually go to
pseudo device drér that does nothingut discard the another process, which implies that the true cost of
data. Thisparticular entry point was chosen because sending that signal is the signalethead plus the con-

it has neer been optimized in ansystem that we text switch averhead. V¢ wanted to measure signal
have measured. Othezntry points, typicallget pi d and context switchwerheads separately since cotite
andget ti neof day, are heavily used, heavily opti- switch times vary widely among operating systems.
mized, and sometimes implemented as -lesal SGI does ery well on signal processing, espe-
library routines rather than system call&.write to cially since their hardware is of an older generation

the / dev/ nul | driver will go through the system

System sigction sig handler
SGI Indigo2 5 8
SGI Challenge 4 9
HP K210 4 13
Linux/i686 4 22
FreeBSD/i586 5 25
Unixware/i686 6 25
IBM Power2 10 27
Solaris/i686 9 45
IBM PowerPC 10 52
Linux/i586 7 52
DEC Alpha@300 6 59
Linux/Alpha 13 138

Table 8. Signal times (microseconds)

than maw of the others.

The Linux/Alpha signal handling numbers are so
poor that we suspect that this is a bug, especialgngi
that the Linux/x86 numbers are quite reasonable.

6.5. Process creation costs

Process benchmarks are used to measure the basid

process primities, such as creating awneprocess,
running a different program, and coxtteswitching.
Process creation benchmarks are of particular interest
in distributed systems since nyaremote operations
include the creation of a remote process to shepherd
the remote operation to completio@ontext switch-

ing is important for the same reasons.

» Simple process creation. The Unix process cre-
ation primitive is f or k, which creates a (virtually)
exact copy of the calling processUnlike VMS and
some other operating systems, Unix startg aew
process with & or k. Consequently,f or k and/or
execve should be fast andlight,” facts that man
have teen ignoring for some time.

| mbench measures simple process creation by
creating a process and immediately exiting the child
process. Thearent process waits for the child pro-
cess to ®it. The benchmark is intended to measure
the averhead for creating a methread of control, so it
includes thd or k and theexi t time.

The benchmark also includesnai t system call
in the parent and conteswitches from the parent to
the child and back ain. Given that context switches
of this sort are on the order of 20 microseconds and a
system call is on the order of 5 microseconds, and that
the entire benchmark time is on the order of a mil-
lisecond or more, the extrav@head is insignificant.
Note that gen this relatvely simple task is gry
expensve ad is measured in milliseconds while most
of the other operations we consider are measured in
microseconds.

* New process creation. The preceding benchmark
did not create a meapplication; it created a cgpof

the old application. This benchmark measures the
cost of creating a me process and changing that

process into a meapplication, which. forms the basis
of every Unix command line inteaice, or shell.
| mbench measures thisatility by forking a nev
child and having that childxecute a ne/ program —
in this case, a tinprogram that prints “hello wrld”
and exits.

The startup cost is especially noticeable on (some)
systems that k& dhared libraries. Shared libraries
can introduce a substantial (tens of milliseconds)
startup cost.

fork fork, exec fork, exec
System &exit & exit | sh-c & exit
Linux/Alpha 0.7 3 12
Linux/i686 0.5 5 17
Linux/i586 0.9 5 16
DEC Alpha@300 2.0 6 16
Unixware/i686 1.0 6 10
IBM PowerPC 2.9 8 50
SGl Indigo2 3.1 8 19
IBM Power2 1.2 8 16
FreeBSD/i586 2.0 11 19
HP K210 3.1 11 20
DEC Alpha@150 4.6 13 39
SGI Challenge 4.0 14 24
Sun Ultral 3.7 20 37
Solaris/i686 4.5 22 46
Sun SC1000 14.0 69 281

Table 9. Process creation time (milliseconds)

» Complicated new process creation. When pro-
grams start other programs, yHeequently use one of
three standard intexes:popen, syst em and/or
execl p. The first tw interfaces start a meprocess
by invoking the standard command interpreter
/ bi n/ sh, to qart the process. Starting programs this
way guarantees that the shell will look for the
requested application in all of the places that the user
would look — in other words, the shell uses the sser’
$PATH variable as a list of places to find the applica-
tion. execl p is a C library routine which also looks
for the program using the usefPATH variable.

Since this is a common way of starting applica-
tions, we felt it vas useful to she the costs of the
generality.

We measure this by startingbi n/ sh to start the
same tiy program we ran in the last cask Table 9
the cost of asking the shell to go look for the program
is quite lage, frequently ten times agpmensve & just
creating a n@ process, and four times aspensve &
explicitly naming the location of the meprogram.

The results that stand out in Table 9 are the poor
Sun Ultra 1 resultsGiven that the processor is one of
the fastest, the problem is likely to be safte. There
is room for substantial impvement in the Solaris
process creation code.

6.6. Context switching

Contet switch time is defined here as the time
needed to se the state of one process and restore the
state of another process.

Context switches are frequently in the critical per
formance path of distriied applications.For exam-
ple, the multiprocessor versions of the IRIX operating
system use processes tovaahta through the net-
working stack. This means that the processing time
for each ne paclet arriving at an idle system includes
the time needed to switch in the networking process.

Typical context switch benchmarks measure just
the minimal context switch time — the time to switch
between tw processes that are doing nothing but con-
text switching. We feel that this is misleading because
there are frequently more thandwective pgrocesses,
and theg usually hae a higer working set (cache foot-
print) than the benchmark processes.

Other benchmarks frequently include the cost of
the system calls needed to force the cansavitches.
For example, Ousterhowt’ ontext switch benchmark
measures context switch time plusraad and a
wri te on a pipe.In mary of the systems measured
by | mbench, the pipe @erhead varies between 30%
and 300% of the context switch time, so we were care-
ful to factor out the pipeverhead.

* Number of processes. The context switch bench-
mark is implemented as a ring ofdwo twenty pro-
cesses that are connected with Unix pipggoken is
passed from process to process, forcing otnte
switches. Thebenchmark measures the time needed
to pass the token mthousand times from process to
process. Eactransfer of the token has twosts: the
contet switch, and theverhead of passing the tek.

In order to calculate just the context switching time,
the benchmark first measures the cost of passing the
token through a ring of pipes in a single proceBhis
overhead time is defined as the cost of passing the
token and is not included in the reported cante
switch time.

» Size of processes. In order to measure more realis-
tic context switch times, we add an artificiariable
size “cache footprint’ to the switching processes.
The cost of the context switch then includes the cost
of restoring uselevel state (cache footprint).The
cache footprint is implemented byuiag the process
allocate an array of ddtand sum the array as a series
of integers after receiving the tk but before passing
the token to the next process. Since most systems will
cache data across coxttswitches, the working set for
the benchmark is slightly lger than the number of
processes times the array size.

It is worthwhile to point out that theverhead
mentioned abee dso includes the cost of accessing
the data, in the sameay as the actual benchmark.

4 All arrays are at the same virtual address in all pro-
cesses.

However, because thewerhead is measured in a single
process, the cost is typically the cost withot”
caches. Irthe Figure 2, each size is plotted as a line,
with context switch times on the Y axis, number of
processes on the X axis, and the process size as the
data set. The process size and the hot caotrbend
costs for the pipe read/writes andyatata access is
what is labeled asi ze=0KB over head=10. The

size is in kilobytes and theverhead is in microsec-
onds.

The context switch time does not includething
other than the cornté switch, provided that all the
benchmark processes fit in the cache. If the total size
of all of the benchmark processes is larger than the
cache size,the cost of each context switch will
include cache missedlVe ae trying to shw realistic
contt switch times as a function of both size and
number of processes.

Context switches for
Linux i686@167Mhz

450
400
350
300
250
200
150
100
50
0

@3-
noSo0O0DMWO O T

.5M

12

T T T T T

0 2 4 6 8 1012141618 20 22

size=0KB overhead=10
size=4KB_ overhead=19
size=16KB overhead=66
size=32KB overhead=129
size=64KB overhead=255

Processes

* x>0

Figure2. Context switch times

Results for an Intel Pentium Pro system running
Linux at 167 MHz are shown in Figure 2. The data
points on the figure are labeled with therking set
due to the sum of data in all of the processEle
actual working set is lger, as it ncludes the process
and kernel wverhead as well. One would expect the
contet switch times to stay constant until thenking
set is approximately the size of the secondl leache.
The Intel system has a 256K seconeelleache, and
the contgt switch times stay almost constant until
about 256K (marked as .25M in the graph).

* Cache issues The context switch benchmark is a
deliberate measurement of thefeefiveness of the

The Sun Ultral conkt switches quite well in part
because of enhancements to thgister windev han-

caches across process context switches. If the cachedling in SPARC V9.

does not include the process identifier (PID, also

sometimes called an address space identifier) as part6.7. Interprocess communication latencies

of the address, then the cache must be flushed on

evay contet switch. If the cache does not map the

same virtual addresses from different processes to dif-

ferent cache lines, then the cache will appear to be
flushed on eery context switch.

If the caches do not cache across odrgevitches
there would be no grouping at the lower left corner of
Figure 2, instead, the graplould appear as a series
of straight, horizontal, parallel linesThe number of
processes will not mattethe two process case will be

Interprocess communication latgnis important
because man operations are control messages to
another process (frequently on another systehte
time to tell the remote process to do something is pure
ovehead and is frequently in the critical path of
important functions such as distributed applications
(e.g., databases, network servers).

The interprocess communication latgneench-
marks typically hee the following form: pass a small
message (a byte or so) back and forth between tw

just as bad as the twenty process case since the cach&,ocesses. Thereported results are vedys the

would not be useful across context switches.

2 processes processes
System OKB 32KB OKB 32KB
Linux/i686 6 22 7 107
Linux/i586 10 163 13 215
Linux/Alpha 11 70 13 78
IBM Power2 13 16 18 43
Sun Ultral 14 31 20 102
DEC Alpha@300 14 17 22 41
IBM PowerPC 16 87 26 144
HP K210 17 17 18 99
Unixware/i686 21 27 22 73
FreeBSD/i586 27 34 33 102
Solaris/i686 36 54 43 118
SGI Indigo2 40 a7 38 104
DEC Alpha@150 53 68 59 134
SGI Challenge 63 80 69 93
Sun SC1000 107 142 104 197

Table 10. Context switch time (microseconds)

We pcked four points on the graph angtracted
those values for Table 10. The complete setatiias,
as well as tools to graph them, are included with
| mbench.

Note that multiprocessor comteswitch times are
frequently more xpensve than uniprocessor conte
switch times. This is because multiprocessor operat-
ing systems tend to ha vey complicated scheduling
code. V¢ helieve that multiprocessor context switch
times can be, and should be, within 10% of the unipro-
cessor times.

Linux does quite well on context switching, espe-
cially on the more recent architecturd®y comparing
the Linux 2 OK processes to the Linux 2 32K pro-
cesses, it is apparent that there is something wrong
with the Linux/i586 case. If we look back to Table 6,
we can find at least part of the cause. The second
level cache lateng for the i586 is substantially ause
than either the i686 or the Alpha.

Given the poor second Vel cache behavior of the
PawverPC, it is surprising that it does so well on con-
text switches, especially the larger sized cases.

microseconds needed to do one round tior one
way timing, about half the round trip is rightiow-
eve, the CPU gcles tend to be somewhat asymmetric
for one trip: receiing is typically more ¥pensve than
sending.

» Pipe latency. Unix pipes are an interprocess com-
munication mechanism implemented as a oag-w
byte stream.Each end of the stream has an associated
file descriptor; one is the write descriptor and the other
the read descriptor.

Pipes are frequently used as a local IPC mecha-
nism. Becausef the simplicity of pipes, theare fre-
qguently the fastest portable communication mecha-
nism.

Pipe lateng is measured by creating a pair of
pipes, forking a child process, and passing adw
back and forth. This benchmark is identical to the
two-process, zero-sized context switch benchmark,
except that it includes both the context switching time
and the pipe werhead in the resultsTable 11 shas
the round trip latencfrom process A to process B and
back to process A.

System Pipéatency
Linux/i686 31
Linux/i586 33
Linux/Alpha 34
Sun Ultral 62
IBM PowerPC 65
DEC Alpha@300 71
HP K210 78
Unixware/i686 86
IBM Power2 91
Solaris/i686 101
FreeBSD/i586 104
SGI Indigo2 131
DEC Alpha@150 179
SGI Challenge 251
Sun SC1000 278

Table 11. Pipelatency (microseconds)

The time can be brekh down to tw context

switches plus four system calls plus the piperleead.

The context switch component isdwf the small pro-
cesses indble 10. This benchmark is identical to the
context switch benchmark i@[isterhout9p

» TCP and RPC/TCP latency. TCP sockets may be
viewed as an interprocess communication mechanism
similar to pipes with the added feature that TCP sock-
ets work across machine boundaries.

TCP and RPC/TCP connections are frequently
used in low-bandwidth, latepesensitve gplications.
The default Oracle distnited lock manager uses TCP
soclets, and the locks per secongiable from this
service are accurately modeled by the TCP Igtenc
test.

System TCP RPC/TCP
Sun Ultral 162 346
DEC Alpha@300 267 371
Linux/i686 263 427
FreeBSD/i586 256 440
Solaris/i686 305 528
Linux/Alpha 429 602
HP K210 146 606
SGI Indigo2 278 641
IBM Power2 332 649
IBM PowerPC 299 698
Linux/i586 467 713
DEC Alpha@150 485 788
SGI Challenge 546 900
Sun SC1000 855 1386

Table 12. TCP latency (microseconds)

Suns RPC is layered eitherver TCP or woer
UDP. The RPC layer is responsible for managing con-
nections (the port mapper), managing different byte
orders and wrd sizes (XDR), and implementing a
remote procedure call abstractiofeble 12 shows the
same benchmark with and without the RPC layer to
shaw the cost of the RPC implementation.

TCP lateng is measured by hang a server pro-
cess that waits for connections and a client process
that connects to the serv The two processes then
exchange a word between them in a lodjne lateng
reported is one round-trip time. The measurements in
Table 12 are local or loopback measurements, since
our intent is to she the overhead of the softere.

The same benchmark may be, and frequently is, used

to measure host-to-host latgnc

Note that the RPC layer frequently adds hundreds
of microseconds of additional latgncThe problem is
not the external data representation (XDR) layer —

System UDP RPC/UDP
Linux/i686 112 217
Sun Ultral 197 267
Linux/Alpha 180 317
DEC Alpha@300 259 358
Linux/i586 187 366
FreeBSD/i586 212 375
Solaris/i686 348 454
IBM Power2 254 531
IBM PowerPC 206 536
HP K210 152 543
SGI Indigo2 313 671
DEC Alpha@150 489 834
SGI Challenge 678 893
Sun SC1000 739 1101

Table 13. UDP latency (microseconds)

few advantages, heever. They presene message
boundaries, whereas TCP does not; and a single UDP
soclet may send messages toyamumber of other
sockets, whereas TCP sends data to only one place.

UDP and RPC/UDP messages are commonly used
in mary client/sener applications. NFS is probably
the most widely used RPC/UDP application in the
world.

Like TCP lateng, UDP lateny is measured by
having a serer process that waits for connections and
a dient process that connects to the senvThe two
processes then exchange ardvbetween them in a
loop. Thelateny reported is round-trip time.The
measurements in Table 13 are local or loopback mea-
surements, since our intent is to whihe overhead of
the softvare. Agin, note that the RPC library can add
hundreds of microseconds of extra latenc

TCP UDP
System Netwrk lateny latency
Sun Ultral 100baseT 280 308
FreeBSD/i586 100baseT 365 304
HP 9000/735 fddi 425 441
SGI Indigo2 10baseT 543 602
HP 9000/735 10baseT 592 603
SGI PaverChallenge hippi 1068 1099
Linux/i586@90Mhz 10baseT 2954 1912

Table 14. Remote latencies (microseconds)

* Network latency. We havea few results for oer
the wire lateng included in Table 14. As might be
expected, the most heavily used netl interlaces
(i.e., ethernet) hee the lowest latencies. The times

the data being passed back and forth is a byte, so thereshaun include the time on the wire, which is about

is no XDR to be done. There is no justification for the
extra cost; it is simply anxpensve implementation.
DCE RPC is worse.

» UDP and RPC/UDP latency. UDP soclets are an
alternatve o TCP sockts. Thg differ in that UDP
soclets are unreliable messages thavdethe retrans-
mission issues to the application. UDP sockete e

130 microseconds for 10Mbit ethernet, 13 microsec-
onds for 100Mbit ethernet and FDDI, and less than 10
microseconds for Hippi.

e TCP connection latency. TCP is a connection-
based, reliable, byte-stream-oriented protocol. As part
of this reliability a ®@nnection must be established
before ag data can be transferred.he connection is

accomplished by a ‘three-way handshak’ an

exchange of packets when the client attempts to con-

nect to the server.

Unlike UDP, where no connection is established,
TCP sends packets at startup tiniean application

6.8. File system latency

File system latencis defined as the time required
to create or delete a zero length filée define it this
way because in manfile systems, such as the BSD
fast file system, the directory operations are done syn-

creates a TCP connection to send one message, thenchronously in order to maintain on-disk igtiy.

the startup time can be a substantial fraction of the
total connection and transfer costShe benchmark
shavs that the connection cost is approximately half
of the cost.

Connection cost is measured bying a serer,
registered using the port mapperaiting for connec-
tions. Theclient figures out where the server igise
tered and then repeatedly timesannect system
call to the serer. The socket is closed after each con-
nect. Tventy connects are completed and tastdst
of them is used as the result. The time measured will
include two of the three packets that nealp te three
way TCP handshak so the cost is actually greater
than the times listed.

System TCRonnection
HP K210 238
Linux/i686 316
IBM Power2 339
FreeBSD/i586 418
Linux/i586 606
SGI Indigo2 667
SGI Challenge 716
Sun Ultral 852
Solaris/i686 1230
Sun SC1000 3047

Table 15. TCP connect latency (microseconds)

Table 15 shows that if the need is to send a quick
message to another processjegithat most pacdbts
get through, a UDP message will cossend and a
reply (if positive aknonvledgments are needed,
which the/ are in order to hee an gpples-to-apples
comparison with TCP). If the transmission medium is
10Mbit Ethernet, the time on the wire will be approxi-
mately 65 microseconds eactayor 130 microsec-
onds total. To do the same thing with a short4id
TCP connection would cost 896 microseconds of wire
time alone.

The comparison is not meant to disparage TCP;
TCP is a useful protocol. Nor is the point to suggest
that all messages should be UDR mary cases, the
difference between 130 microseconds and 900
microseconds is insignificant compared with other
aspects of application performancEowever, if the
application is very latecsensitve and the transmis-
sion medium is sl@ (such as serial link or a message
through mam routers), then a UDP message may
prove cheaper.

Since the file data is typically cached and sent to disk
at some later date, the file creation and deletion
become the bottleneck seen by an applicatidhis
bottleneck is substantial: to do a synchronous update
to a disk is a matter of tens of milliseconds. mary
cases, this bottleneck is much more of a peedgier-
formance issue than processor speed.

The benchmark creates 1,000 zero-sized files and
then deletes them. All the files are created in one
directory and their names are short, such as "a", "b",

"c", ... "aa", "ab",

System FS Create Delete

Linux/i686 EXT2FS 751 45
HP K210 HFS 579 67

Linux/i586 EXT2FS 1,114 95
Linux/Alpha EXT2FS 834 115
Unixware/i686 UFS 450 369
SGI Challenge XFS 3,508 4,016
DEC Alpha@300 ANFS 4,255 4,184
Solaris/i686 UFS 23,809 7,244
Sun Ultral UFS 18,181 8,333
Sun SC1000 UFS 25,000 11,111
FreeBSD/i586 UFS 28,571 11,235
SGI Indigo2 EFS 11,904 11,494
DEC Alpha@150 ? 3,461 12,345
IBM PowerPC JFS 12,658 12,658
IBM Power2 JFS 13,333 12,82Q

Table 16. File system latency (microseconds)

The create and delete latencies arevshim Table
16. Noticethat Linux does extremely well here, 2 to 3
orders of magnitude faster than thewsdgt systems.
However, Linux does not guarantee anything about the
disk intagrity; the directory operations are done in
memory Other fast systems, such as S{FS, use a
log to guarantee the file system mniéy. The slaver
systems, all those with “10 millisecond file latencies,
are using synchronous writes to guarantee the file sys-
tem intgrity. Unless Unixware has modified UFS
substantiallythey must be running in an unsafe mode
since the FreeBSD UFS is much slower and both file
systems are basically the 4BSD fast file system.

6.9. Disk latency

Included withl mbench is a small benchmarking
program useful for measuring disk and file 1/0.
| ndd, which is patterned after the Unix utilityrd,
measures both sequential and random 1/O, optionally
generates patterns on output and checks them on
input, supports flushing the data from thdfér cache
on systems that supparsync, and has a very fla-
ble user intedce. Magy I/O benchmarks can be

trivially replaced with ger | script wrapped around
I mdd.

While we could hee generated both sequential
and random 1/O results as part of this paper dd
not because those benchmarks areviheafluenced
by the performance of the disk wi# wsed in the test.
We intentionally measure only the systemeead of
a S| command since thaverhead may become a
bottleneck in large database configurations.

Some important applications, such as transaction
processing, are limited by random disk IO latenc
Administrators can increase the number of disk opera-
tions per second byuging more disks, until the pro-
cessor verhead becomes the bottleneckhe | ndd
benchmark measures the processearleead associ-
ated with each disk operation, and it can provide an
upper bound on the number of disk operations the pro-
cessor can supportt is designed for SCSI disks, and
it assumes that most disksvea®-128K read-ahead
buffers and that thecan read ahead faster than the
processor can request the chunks of data.

The benchmark simulates a large number of disks
by reading 512byte transfers sequentially from the ra
disk device (rev disks are unbffered and are not read
ahead by Unix). Since the disk can read ahestef

interrupted, reconnect, and transfer the data.

This technique can be used to disachow many
drives a gstem can support before the system
becomes CPU-limited because it can produce the
overhead load of a fully configured system with just a
few disks.

7. Futurework

There are seral known impreements and xen-
sions that could be madeltobench.

« Memory latency. The current benchmark measures
clean-read lateryc By clean, we mean that the cache
lines being replaced are highly dily to be unmodi-
fied, so there is no associated write-back ca¥e
would like to extend the benchmark to measure dirty-
read lateny, as well as write lateng. Other changes
include making the benchmark impervious to sequen-
tial prefetching and measuring TLB miss cost.

* MP benchmarks. None of the benchmarks in
| mbench is designed to measureyamultiprocessor
features directly At a mnimum, we could measure
cache-to-cache latepcas well as cache-to-cache
bandwidth.

e Static vs. dynamic processes. In the process cre-

than the system can request data, the benchmark is ation section, we allude to the cost of starting up pro-

doing small transfers of data from the dsskack
buffer. Another way to look at this is that the bench-
mark is doing memory-to-memory transfers across a
SCSI channellt is possible to generate loads of more

than 1,000 SCSI operations/second on a single SCSI * McCalpin’s stream benchmark. We will probably

disk. For comparison, disks under database load typi-
cally run at 20-80 operations per second.

System DisKatency

SGI Challenge 920
SGI Indigo2 984
HP K210 1103

DEC Alpha@150 1436
Sun SC1000 1466
Sun Ultral 2242

Table 17. SCSI 1/O overhead (microseconds)

The resulting wverhead number representsosver
bound on the werhead of a disk I1/0. The reaver-

head numbers will be higher on SCSI systems because

most SCSI controllers will not disconnect if the
request can be satisfied immediateluring the

cesses that use shared libraries. When we figure out
how to create statically linked processes on all or most
systems, we could quantify these costs exactly.

incorporate part or all of this benchmark into

| mbench.

« Automatic sizing. We haveenough technology that
we could determine the size of the external cache and
autosize the memory used such that titereal cache
had no effect.

* Moredetailed papers. There are seral areas that
could yield some interesting paper3he memory
lateng section could use an in-depttieatment, and
the context switching section could turn into an inter
esting discussion of caching technology.

8. Conclusion

| mbench is a useful, portable micro-benchmark
suite designed to measure important aspects of system
performance. W have found that a good memory

benchmark, the processor simply sends the request subsystem is at least as important as the processor
and transfers the data, while during normal operation, SP€ed. Asprocessors gewster anddster more and
the processor will send the request, disconnect, get More of the system design effort will need tove®

5 This may not aliays be true: a processor could be
fast enough to makthe requests faster than the rotating
disk. If we tale 8Vi/second to be disk speed, andideé
that by 512 (the minimum transfer size), that is 12,288
I0s/second, or 81 microseconds/I®@/e cn't know of
ary processor/OS/IO controller combinations that can do
an 10 in 81 microseconds.

the cache and memory subsystems.

9. Acknowledgments

Many people hae povided invaluable help and
insight into both the benchmarks themselves and the
paper The USENIX revievers were especially helpful.
We thank all of them and especially thankenKOkin
(SUN), Kevin Normoyle (SUN), Satya NishtalagSUN),

Greg Chesson(SGl), John Mashg (SGI), Neal Nuck-
olls (SGI), John McCalpin (Univ. of Delavare), Ron
Minnich (Sarnoffy Chris Ruemmle(HP), Tom Rokicki
(HP), and John WeitzDigidesign)

We would also lile to hank all of the people that
have un the benchmark and contributed their results;
none of this would ha been possible without their
assistance.

Our thanks to all of the free softme community
for tools that were used during this projectrbench
is currently deeloped on Linux, a copylefted Unix
written by Linus Brvalds and his band of happack-
ers. Thispaper and all of thenbench documenta-
tion was produced using thgr of f suite of tools
written by James ClarkFinally, al of the data pro-
cessing of the results is done wijtler | written by
Larry Wall.

Sun Microsystems, and in particular Paul Borrill,
supported the initial delopment of this projectSili-
con Graphics has supported ongoingettgpment that
turned into far more time then weee imagined. W&
are grateful to both of these companies for their finan-
cial support.

10. Obtaining the benchmarks

The benchmarks are valable at
http://reality.sgi.com/employees/Im_engr/imbench.tgz
as well as via a mail seav You may request the lat-
est version ofl nbench by sending email to
archives@slovax.engr.sgi.comith Imbench-current*
as the subject.

References

[Chen94] P M. Chen and D. A. &terson, “A n&v
approach to 1/0O performancevatuation - self-
scaling 1/0 benchmarks, predicted /O perfor
mance,” Transactions on Computer Systerti3,(4),
pp. 308-339, Neember 1994,

[Chen93] Peter M. Chen and David Patterststor-
age performance — metrics and benchmarksgp-
ceedings of the IEEE81 (8), pp. 1151-1165,
August 1993.

[Fenwick95] David M. Fenwick, Denis J.oley,
William B. Gist, Stephen R.anDoren, and Danial
Wissell, “The AlphaServer 8000 series: high-end
sener platform deelopment,” Digital Technical
Journal, 7 (1), pp. 43-65, August 1995.

[Hennessy96] John L. Hennessy andvidaA. Patter-
son, ‘Computer Architecture A Quantita
Approach, 2nd Editiori,M organ Kaufman, 1996.

[McCalpin95] John D. McCalpin, “Memory band-
width and machine balance in current high perfor
mance computers,]JEEE Tedhnical Committee on
Computer Achitecture rewsletter, to appear
December 1995.

[McVoy91] L. W. McVoy and S. R. Kleiman, Extent-
like RPerformance from a Unix File Systempp.

33-43, Proceedings USENIX wer Conference,
January 1991.

[Ousterhout90] John K. OusterhoutWhy aren’t
operating systems getting faster as fast as hard-
ware?,” pp. 247-256, Proceedings USENIX Sum-
mer Conference, June 1990.

[Park90] Arvin Park and J. C. Beek “IOStone: a
synthetic file system benchmatkComputer Achi-
tectue News, 18 (2), pp. 45-52, June 1990.

[Saaredra95] R.H. Saaedra and A.J. Smith;Measur-
ing cache and TLB performance and their effect on
benchmark runtime$,JEEE Transactions on Com-
puters,44 (10), pp. 1223-1235, October 1995.

[Stallman89] Free Software Foundation, Richard
Stallman, “General Public License, 1989.
Included withl nbench.

[Toshiba94] Toshiba, “DRAM Components and Mod-
ules,” pp. A59-A77,C37-C42, Toshiba America
Electronic Components, Inc., 1994.

[Wolman89] Barry L. VBlman and Thomas M. Olson,
“lIOBENCH: a system independent 10 bench-
mark,” Computer Achitecture News, 17 (5), pp.
55-70, September 1989.

Biographical information

Larry McWoy aurrently works Silicon Graphics in
the Networking Systems fision on high perfor
mance netarked file systems and networking archi-
tecture. His computer interests include hardre
architecture, softare implementation and architec-
ture, performance issues, and free (GPLed) soéw
issues. Pngously at Sun, he as the architect for the
SRARC Cluster product line, redesigned and wrote an
entire source management systema(pooductized as
TeamWare), implemented UFS clustering, and imple-
mented all of the Posix 1003.1 support in SunOS 4.1.
Concurrent with Sun w@rk, he lectured at Stanford
University on Operating Systems. Before Sun, he
worked on the EA systems supercomputer Unix port.
He may be reached by electronically ina@sgi.com
or by phone at (415) 933-1804.

Carl Staelin works for Helett-Packard Laborato-
ries in the External Research PrograHiis research
interests include network information infrastructures
and high performance storage systetds.worked for
HP at U.C. Berkley on the 4.4BSD LFS port, the
HighLight hierarchical storage file system, the Mari-
posa distribted database, and the WOproject. He
receved his PhD in Computer Science from Princeton
University in 1991 in high performance file system
design. He may be reached electronically via
staelin@hpl.hp.com

