mhz: Anatomy of a micro-benchmark

Carl Staelin
Hewlett-Packard Laboratories

Larry McVoy
BitMover, Inc.

Abstract Imbench2.0. Lmbencks guiding philosophy can be
described as “accuracy, speed, portability, and

Mhz is a portable ANSI/C program that determinesimplicity.” Each of these tenets impacted theigtes

the processor clock speed in a platform independest mhz

way. It measures the execution time of several _ -

different C expressions and finds treatest common At first glance, determining the processor clockexp

L . . : . .seems simple; time the execution of a short nurober
ivisor to determine the duration of a single clock tick; ; o . ;
diviso g instructions and divide by the number of instruetio

Mhz can be used by anyone who wants or needs There are several problems with this simple apgrpac
know the processor clock speed. In large instaliet such as the lack of standard clocks with enough
it is often easier to experimentally determine ¢lock resolution to measure the duration of a few instons
speed of a given machine than to keep track of eaabcurately. In additionmhz is written in portable
computer. For example, a platform-independemdNSI/C that can be compiled into an unknown
database system optimizer may use the clock spesdjuence of instructions of unknown length.

while calculating the performance tradeoffs of vais

optimization techniques. There are a variety of problems that need to be

addressed in order to accurately measure timevadter

To run the benchmark long enough for timing to ben various processors under various operating rmgste
accurate,mhz executes each expression in a loop. TOn processors with cycle times of 5 nano-seconds,
minimize the loop overhead the expression is r&pkatsome operating systems have low-resolution cloaks,

a hundred times. Unfortunately, repetition enablepoor as 10,000,000 nano-seconds, while others have
many hardware and compiler optimizations that can,000 nano-second resolution clocks.

have surprising effects on the experimental resuItE bench 2.0 | ¢ tirel imi
While writingmhz, much of the intellectual effort went moench 2.1 Incorporates an entirely hew timing
into the design of expressions that minimize ﬂ%arness which automatically controls the experiadent

opportunities for compiler and hardware optimizatio system to prqwde acgurate results on aI'I platforms
For example, it determines how long experimentshav

Mhz utilizesImbench2.0's new timing harness, which to run in order for timing results to be accuraiéhin
manages the benchmarking process. The harne% and then controls the experiments so they rsh ju
automatically adjusts the benchmark to minimize ruthat long. It also automatically corrects for was
time while preserving accuracy, determines theverheads, such as loop overhead and timing
necessary timing duration to get accurate resutteff measurement overhead. Considerable effort weat int
the system clock, and measures and accounts for bptreserving accuracy while minimizing run time, whic
loop overhead and measurement overhead. It is uskds paid off in shorter run times (with the same or
throughoutimbench2.0 and can be used to measurebetter accuracy asmbench 1.) on systems with
the performance of other applications. relatively fine grained clocks.

Determining the clock speed in a platform indepande
1 Introduction manner is surprisingly difficult because theredsway

i) to measure one clock tick. The inspiration for the
Mhzis a portable ANSI/C program that determines the, ion was based on hazy memories from high dchoo

processor clock speed in a platform indepe”deEﬁemistry and physics, of techniques used by

fashion, which does not depend on any specifigneteenth century chemists and physicists to
compiler, operating system, or processdhzis part determine the atomic weight of elements and the
of thelmbench[1] suite of micro-benchmarks and wa: harge of an electron [2,3,4].

used to develop the new timing methodologies for

Section 2 describedmbench 1.0’s solution and its « The loop size is fixed and provides no guarantee
limitations, while Section 3 provides some backgibu that the timing interval is significant relative ttoe

on computer architecture and how it affectshz system clock resolution.

Sections 4 and 5 introduce and describe the newer
solution. The experimental methodology used by
Imbenchin general andnhzin particular are described

in Sections 6 and 7, and the results are presented
Section 8. The Appendix contains a descriptiothef An approach that would be accurate on all modeth an
Imbench 2.(benchmarking API and a brief tutorial onanticipated architectures was needed.

writing benchmarks using thmbenchAPI.

The timing loop is only run once, so it is
susceptible to errors caused by other independent
activity on the processor.

2.1 Other approaches

2 Imbench 1.0’s solution The approach described above requirdszto know
Lmbench 1.0 includes a version ofmhz that was the number of clock ticks per expression. This is
accurate for a wide range of processors, but aoeiai infeasible sincenhzis written in ANSI/C and intended
processor-specific code. It has a single loop,clvhi to run on a wide variety of processors. We coutl n
runs for about a second. The clock speed is tifiad expressions that require a fixed number otklo
(estimated) number of clock ticks divided by thdicks on all processors. Clearly a method for
elapsed time. The number of clock ticks igletermining the clock speed that doesn't requighsu
approximated by multiplying the number of loopinformation is needed.

iterations (say 10,000) by the number of eXpreSSiO%everal
per loop (1000) and the number of clock ticks P& e asurin
expression. The number of clock ticks per expogssi
is known for some processors and assumed for other:

techniqgues were investigated, such as
g the execution time of two expressions,
subtracting the two times, and hopefully getting th
duration of a single clock tick. Other techniques
include: creating loops with different ratios of aw
expressions (e.g., at+a>>=1; and a++;at+a>>=1

main(int ac, char *av[])

register int a = 1, N = 10000; which are 1:1 and 2:1 respectively), and varying th
double usecs, mhz; number of times an expression is repeated within th
%?r(tl(): 0 < N; +41) | loop. Some of the techniques, such as measuring the
a>>=ac; // expression 1 difference between two expressions, suffered froen t
a>>=ac; // expression 2 same weakness as the solution Imbench 1.0
a>>=ac: // expression 1000 Unfortunately, none of these approaches works. At
}eecs = stop(: bgst, most approache;: could give the time to ezexut
mhz = N * 1000 / (double)usecs; single expression, which can already be measured.

}

Figurel 3 Computer architecture

Figure 1 contains pseudo-code for a simplezthat \jodern computer architectures are complicated and
works for many existing processors. It assumes thggniy optimized. Many of these optimizations are

each shift operation takes a single clock tick. TQgsefyl for general purpose programs, but can wreak
determine the processor clock speed, just run thyoc on our micro-benchmark. They make it nearly

benchmark long enough (say 10,000 iterations), afdhossible to predict exactly what happens during
then divide the number of clock ticks (10000 * 1P00gyacytion.

by the durationLmbench1.0s mhz had processor-
specific expressions selected at compile time based

the operating system. 3.1 Superscalar

Although the original approach worked on about 90%guper-scalar processors have multiple computational

of the platforms tested, it has several limitations units and can execute multiple operations in alsing
cycle. Super-scalar processors can also overlap the

 The expressions are processor-dependent. execution of adjacent instructions, which means the

« The number of clock ticks per expression is ndiverage number of clock ticks per instruction is-no

always known a-priori. integral [5].

For example, the expressicmt=b+at+a might be 4 mhz solution

compiled into: .
MhZs computes the clock speed using tipeatest

ADD rl,r1,r3 ;r3=ata common diviso(GCD) of the execution time for nine
ADD r2,r1,r4 ;rd=a+b expressions, assuming that the execution timedoh e
ADD r3,r4,rl ;rl=(atb) + (a+a) is an integral multiple of the time taken by a $ng

A superscalar processor with two arithmetic unit§/OcK tick. This technique makes no assumptionsiabo

could execute three instructions in two clock cydtg 1€ number of clock ticks for any single instruntior
executing the first two instructions in paralleThis the number of instructions used to implement argive

would make the average number of cycles pgrxpression, excgpt that it executes in an integral
instruction 0.66. number of clock ticks.

To ensure that each expression executes in arrahteg
number of clock ticks (on averagahhz uses tightly

3.2 Instruction reorder buffer interlocked operations so processors cannot overlap
Instruction reorder buffers provide limited workffe the execution of the expressions.

like architecture capabilities to otherwise tramtitil) , .
processors [6,7,8]. The processor keeps trachtef-i Mhz can compute the CPQ cycle _t|me if the complle.r
instruction dependencies and executes an instruatio 9€nerates at least two instruction sequences with
soon as its data is available (data may be undaila'elatively prime cycle counts. Mhz uses several
because it has not arrived from memory yet or begaldifferent sequences to increase the chance that two
it is the result of an instruction that hasn't coeted Seduences will have relatively prime cycle counts o
yet). Unlike dataflow processors, instruction cesr 2Ny given architecture.

buffers have a bounded (and limited) size, so tieee The relatively prime condition is necessary for the
sliding window of workflow-like capabilities. greatest common divisor method work. If all theley

Suppose there is a processor with two arithmetisun€oUNts have a common factor (e.g. 2), then the
and one barrel-shifter and the following assembi@PParent CPU speed will be reduced by that common

code: actor. Also, if there is so much variability inet data
that there is no apparent GCD, thmhzwill return a
ADD r1,r2,r3 ;r3=rl+r2 result that is too large. The instruction sequerae
SHR r3,1,r4 ;r4=r3>>1 chosen so that there are almost always two segsience
ADD rl,r5,r6 ; r6=rl+r5 with relatively prime lengths.

During execution the CPU will execute the two ADDThe processor's clock speed is the GCD of the
instructions in parallel because all the argumemés execution times of the various instruction sequence
available, and then it will execute the SHR indiort For example, supposmhzis trying to compute the

as soon as the first ADD completes. clock speed for a 120MHz processor, and there are

Instruction reorder buffers combined with superiaca WO Instruction sequences:

processors provide the system with a great deal of SHR (2 cycles)
flexibility and many opportunities for overlapping2. SHR:ADD (3 cycles)
computations. Unfortunately, that flexibility maké L

difficult to craft C expressions that preclude fiata !f the execution times are:

execution. 1. SHR 11.1ns (2 cycles)
2. SHR;ADD 16.6ns (3 cycles)
3.3 VLIW The GCD is 5.55ns and the calculated clock speed is

At least one next generation processor will userg-y ndeed 120MHz. Aside from problems caused by
long-instruction-word (VLIW) ~architecture. Each&Xperimental noise, this method should always work
VLIW instruction includes several independent sub¥ith instruction sequences that have relativelyngri
instructions that may execute in parallel [9]. Th&Ycle counts.

compiler optimizer technology for VLIW is complex syppose the two instruction sequences have cycle
because of this new parallelism. counts that are not relatively prime:

The next section explains why we see no reason for SHR 11.1ns (2 cycles)
mhzto work incorrectly on VLIW processors. 2. SHR;ADD;SUB 22.2ns (4 cycles)

double
gcd(double e[], int esize)

[* assumption: shortest expression has
* no more than MAX_COUNT instructions */
#define MAX_COUNT 6
int i,], size;
double min_e, min_chi2, result, a, b, chi2;
double *y, *x = (double *)
malloc(esize*esize*sizeof(double));

/* find the smallest value */
min_e = double_min(e, vsize);
> {elil}{lelil-eli]|:i,),i=}.{0,0} */
construct_dataset(e, esize, &y, &size);
for (i = 1; i < MAX_COUNT; ++i) {
b =min_e /i; /* clock tick guess */
for (j = 0; j < size; ++]

experimental time is an integral multiple mfand are
created sob; = min(g) / i. The least-mean-squares
linear regression ofd,g} gives a better estimate &f
than the initial guesb; because it is based on all the
experimental observations.

The besty; can be chosen using the chi-squared error
of the least-mean-squares linear regression. \ighen

b, the chi-squared error will be large because some
observations will have poor fits. Whén= b (within

the usual experimental error), the chi-squaredrerro
will represent the experimental error, and will fae
smaller than errors fds; > b. Whenb; <b andb is a
multiple ofb;, the chi-squared error will be equal to or

x[j] = floor(y[j] / b + 0.5);
/* regression of the samples */
regression(x, y, size, &a, &b, &chi2);
if (i == 1 || *i*chi2 < min_chi2) { Since multiples of the first best fit will have aqual
result=b; or smaller chi-squared error measurtzchooses the
min_chi2 = chiz; first fit that significantly reduces the chi-squarerror.
Comparing the (current) minimum chi-squared error
Hggg; with ani? weighted chi-squared error favors previous
return result; minimum chi-squared errors and preventsaz from
choosing multiples of the correct result.

smaller than the error d&f because noisy observations
may have a slightly improved fit.

Figure2 Figure 2 contains the routimed() , which computes

The GCD will be 11.1ns, and the clock speed wif® GCD. It finds the minimum execution time,
appear to be 60MHz, which is the true speednin_e. construct_dataset() creates the
120MHz, divided by the common factor, 2. dataset y;, which includes all the .experllmental

]) . measurementsg, and adds data points with the
Mhz uses nine expressions, which have been carefuffference between each pair of observations. To
designed to minimize this problem. Findingensure that the regression runs through the origin,
expressions that execute in an integral numbeloakc 5150 adds the point (0,0). For each integral nurobe
ticks on all processors is non-trivial and is adde® ook ticks.i i0{L, 2, ..., 6}, it computesy, the points

below. {c.y}, and the least-mean-squares linear regression
[10]. The linear regression gives the chi-squaredr

4.1 Greatest common divisor anda andb such thaty = a + bx. If the weighted chi-
squared error is less than the minimum chi-squared

Flndlbng the GCDl ofs_the expression ﬁxec_utuc)jn UME€Srror, ged() discards the previous result and saves
can be non-trivial. Since integer arithmetic does o o bt i

apply to an array of real-valued observatianzcan
not do integer arithmetic to find the GCD. In aduh,
the observations contain noise, which can obsthwee t5 Atomic expressions
true GCD. Mhz can, however, compute the GCD by
assuming that each C expression executes in
integral number of clock ticks.

Z needs simple C expressions that can be strung
together without being optimized out of a loop by a
smart compiler. The key is to prevent the processo
Assuming a single clock tick is nano-seconds, eachfrom computing expressions in parallel or overlagpi
experimental observatios, can be converted into anexecution of adjacent expressions. Thus each C
integer number of clock ticks;, wherec; = floor (g expression and sub-expression must depend on the
/'b +0.5. The set of pointsd,g} should be nearly result of the previous expression and it must hawe
linear, and the linear regression should have yub-expressions that can begin execution before the
intercept O and slope completion of the previous expression. Otherwise th
processor may utilize the inherent parallelism hie t
LFggoression and overlap the execution of adjacent
sttantiations of an expression.

Mhz cannot directly calculatd, but it can make a
series of educated guesses and choose the best g
The guessesh;, are based on the fact that eac

This dependency is critical to the design of the € a+=b;b+=a;
expressions. For example, the expressmrra
satisfies the dependency criteria because the n
instantiation of the expression cannot be evaluat
until the current expression has completed. The a+=a;// ADD optimized to a=0
expressiona+=b+c is not completely dependent. gg=a:// AND optimized away completely
because thé+c sub-expression may be calculated iR ar=a; // XOR optimized to a=0

parallel with the previous instantiationa+(b+c) « a+=b: // ADD optimized to a+=b+b+b+...

Sub-expression. » a+=aja-=a; // ADD;SUB optimized to a=0

e or more compilers optimized away the following
expressions:

) . . The expressiona+=a can be optimized toa=0
5.1 Compiler interactions because our loops contained one hundred copies of
Designing the expressions that execute in an iatega+=a in a single iteration of the loop. Each instance
number of clock ticks (on average) with enouglefa+=a is equivalent t@<<=1 for unsigned integers.
variety to ensure that there are two expressiornls wiSince C integers have 32 bits (or at most 64 ks,
relatively prime cycle counts was difficult. Thesince one hundred instancesasf=a is equivalent to
problems were increased by the compiler ana<<=100, the whole loop can be optimized to the
processor optimizations and by compiler bugs argingle expressioa=0.

limitations. The loop containing the expressi@&=a can be

We experimented with instruction sequences that usptimized away becausa&=a doesn’'t change the
pointer accesses to cached memory locations awalue ofa. On the other han&"=a is equivalent to
multi-variable integer arithmetic. Nearly all sucha=0, so the loop containing that expression can simply
expressions are optimized by modern processors tiy replaced by the single expressax0. Similarly
utilize super-scalar processing and instructiothe sequenca+=a;a-=a; is equivalent t@=0 since
rescheduling to overlap execution of adjacent imsta a-a=0 .

of the same expression. The expressiona+=b provides a wide variety of

Optimizing compilers gave us a number of headachgsssible optimizations when put in a loop with a
because they are able to optimize away marundred repetitions. One simple optimization iséb
candidate expressions, if they are in simple lodpst a+=b+b+b+b+... This allows superscalar hardware to
example, the expressiam++; was easily optimized. execute multiple sub-expressions in parallel, which
So we needed to find mathematical expressions thagans that the number of clock cycles needed to
compiler writers either could not or have not bo#ite compute the sum is not necessarily a multiple .10
to optimize out of a loop. In addition, compilers may optimize the inner lowp

. - : . .a+=100*b .
Sometimes, the optimizer simply discarded the ent|ra 00%b

loop because the result was not used anywhere.

Consequently,Imbench is sprinkled with calls to 5.2 mhz expressions

use_result) ~, a dummy procedure whose soler, yayimize the possibility that cycle counts it
purpose is to fool compilers into thinking its anent o |a4vely prime, nine expressions were select&dr

is used somewhere else in the program. example, the expressioas>=b anda>>=a+a differ
Nearly all expressions using several integer véggb by a single ADD operation, so on most machines thei
were useless because they did not interlock cdyrectexecution will differ by a single clock tick. Treare
i.e., advanced processors could overlap subimilar small differences between many of the
expressions of the same expression or sub-expnsssi@Xxpressions.

of adjacent expressions, and conseque.ntly, thegeer 1, expressions are:

number of instructions per expression was non-

integral. 1. p='p;
2. a’=ata;
There were a few arithmetic expressions that gaee o 3. a’=atata;
or more compilers trouble (e.g. core dump, infinite g az;:bi
) . a>>=ata;
loop, or erroneous output): 6. ar—a<<b:
. a>>=3a; 7. a’=a+tb;
—haa- 8. at=(a+b)&07;
* at=b+a; ’
9. a++at=l;a<<=1,

#define MHZ(M, expression) \ auto-sizing the duration of each benchmark, and

voi?1 440 (redister | \ \" conducting multiple experiments. Methods for
-m Z—registgf ?'?,t:eEr ﬁ?)? n’ \ measuring and eliminating several factors that
register TYPE a, \ influence the accuracy of timing measurements, such
register TYPE b) \ \ as the system clock resolution, are described below
for; n>0; --n \ - .
(HUND)RED(expression) \ The timing harness includes two macr&ENCH()
) \'" andBENCHL1(), which provide a uniform method for
use_pointer(p +a + b; ! \ conducting experiments. BENCH1() does one
. t experiment and saves the result, wBIENCH()does
mhz_##M(int enough) \ eleven experiments usifBENCH1() and saves the
YPE - \ \" median result. Benchmarked operations must be
i=1: : : -
long n= 1 \ idempotent so they can be repeated indefinitely.
TYPE *x=(TYPE *)&x, \
TYPE *p=(TYPE *¥)x; \ #include "bench.h"
mhz##M(1, p, 1, 1); \ int
BENCH1(_mhz_##M(n,p,i,i);n=1;, enough) \ main(int argc, char *argv[])
save_n(100 * get_n()); \
} BENCH(Irand48(), 0);
) micro("lrand48()", get_n());
Figure3 exit(0);

}
Figure 3 shows how the expressions are embeddedFigure4

the timing harness. EadWlHZ() macro creates both

the function used to measure the execution tima ofFjgyre 4 shows a complete example of a benchmark
given expression and the corresponding Simpi@at measures the performance I@nd48() and
function. Additional pieces of the harness, sushh@ reports its performance in micro-seconds. Please se
experimental timing subsystem, are explained below.the Appendix for a description of thenbench 2.0

Each expression is repeated 100 times in a |0(p‘§:nchmarking .API and a brief tutorial on writing
embedded in a simple function (e.gihz_1()). benchmarks using the API.

Another function (e.g.mhz_1()) uses the standard

Imbenchtiming macro,BENCH1(), to measure the 6.1 Clock resolution

duration of each iteration of the loop in the .

corresponding simple function. The loop is embeddd-Mbench uses gettimeofday() to measure the
in a separate subroutine to increase the likelirbad time and compute the time intervals. Unfortunately

the compilers would utilize register variables agéttimeofday() has varying resolutions across
intended. different flavors of UNIX, and there is no standard

. method for querying the operating system to find th
Different processors can execute the expressiang USresolution of the system clock.

different instructions and in varying number of ato ,

ticks, but in general there are at least two exgioes Lmbenchincludes a modulecompute_enough()
taking relatively prime number of clock ticks. Ajsn that automatically computes the time interval reegi
each case, the various pieces of each expression @ reduce the timing error (due to clock resoluiom
completely dependent and there are no two sul?—s?' than 1%. _Th_e mo_dule increases the timingviake
expressions that can be executed in parallel. cbdja until small yarlatlons in t.he. mea}sured work prodyce
instantiations of expressions are completely depend correspondingly small variations in the measureteti

S0 a processor cannot overlap execution. If a 100 m|II|—se_co_nd |.nterval is insufficient, tisgstem

uses 1second timing interval.

T To verify that a timing interval is accurate to hit
6 Imbench 2.0 tlmmg harness 1%, it determines how many loop iterations consume
The single most important element of a goothe desired time, and then jiggles the number of
benchmark suite is the quality and reliability & i iterations by 0.5% to time the duration of 100.0%,

measurement systenlmbench 2.0ncludes a timing 100.5%, 101.0%, and 101.5% iterations. If the §ime

harness that manages the experimental timing psocese 100.20.1%, 100.%0.1%, 101.80.1%, and

to produce accurate results in the least possiiile.t 101.5:0.1%, the timing interval is presumed to be
Lmbench 2.0gets more accurate results in less timgecurate to within 1%.

than Imbench 1.0by considering clock resolution,

6.2 Timing overhead adjusts the iteration count after each timing wdeér If

Once the timing interval “enough” has been Computegie measured time is less than 150 microsecones, th

the overhead of the timing measurements must
measured. The overhead is significant only oresyst
where the timing interval is relatively short.

e iteration count is multiplied by 10, otherwite
iteration count is scaled by 1.1 times the raticthef
desired time to the measured time.

The timing overhead is measured by benchmarkin ome systems with low-resolution clocks return $mal

gettimeofday() . InImbenchthe timing overhead : teglratl! valtiesb for hlntervals str;:atller”t?an the kl(l)tc
is the time to exigettimeofday() at the start of 'c>oUtion. Ltmoenchassumes that afl iming resutts

the timing interval plus the time to entersmaller than 150 microseconds are meaningless and

gettimeofday() at the end of the timing interval, lnr:]ut:t"?]“?z rt]he Ittehrattli?:inc?rl:fn trmbyti %‘Ot' (ﬁ;[heiwttshe
so the time to calyjettimeofday() represents the enchcan use the g information to compuile the

timing overhead. iteration count negded for thg j[lmln.g mtervgl te b
long enough. Since the timing information has
experimental noisdmbenchsets the iteration count a

6.3 Loop overhead little larger than necessary.

Sometimes, the overhead associated withfding

loop can be significant compared to the duratiothef g 5 Multiple experiments
benchmarked feature, so the loop overhead neduks to -
measured and subtracted from the execution time. L: bench1.0 reports the results folr only one timing
far as possible, all micro-benchmarkslinbench2.0 N erval. As a .re'sultlmbench 1.0is vulngrable o
have been designed to minimize the impact of lo independent activity that steals processor timen ftioe

overhead on experimental results. Micro-benchmar nchmark. In practice, the timing intervals ayebig

measuring fast operations have multiple instancfes:it at tl? Ei'Tt?E:Ct ciir\l/itthe ﬁs\tlj\lltiévazn’rl:nga;, ur:bretser
the operation in the loop to reduce the relativ substantial aclivity. Howevembenche.Us shorte

magnitude of the loop overhead. iming interva'\ls enableq by the loop auto-.sizingj.an
clock resolution detection mean that relativelyldit

To compute the loop overheatinbench uses two independent activity could have a significant intpac

loops, the first with one instance of an expressiod a single experiment.

the second with two instances of the expressiaingi

two equations: Lmbench 2.0 performs multiple experiments and

reports the median result. In general, the median
T, = N;(loop_overhead+ work) more robust and stable in the face of noise than th

T, = N,(loop_ overheadt 2work) average result [10,11,12].

Where T, T, are the measured execution times and N
N are the loop iteration counts. These equations cg Making mhz rea”y work

be solved for the loop overhead: Mhz has different requirements and sensitivities than

loop_overhead= n T the res_t ofImbe_nch Mhz i; more sensitive to small

- N, N, errors in any given experiment than any of the othe

benchmarks inmbench As a resultmhzincludes a
.. variety of techniques to detect or minimize the atip
6.4 Loop auto-sizing of noisy data on its accuradylhz needs the ability to
Lmbench1.0 uses fixed-size loops for many of theletect when the data is too noisy to generate an
benchmarks. The loop sizes were hand-selectaghto mccurate result and to detect obviously erroneaits. d
for about a second on contemporary processorsh Wi#lhz also needs to be insensitive to single experinhenta
processor speeds doubling every eighteen monthssults that are inaccurate.

Imbench needs loops that can automatically scal

Memselves 50 the_bercmarks. accuracy is ngiiceIEIeRICS e dook speed. and ince o
compromised by faster processors. P

uses the minimum experimental result for each
All timing intervals must have the necessary aotyira expression, rather than the more standard median.
but the system does not know a-priori how man
iterations are needed to run for the desired tifibe
experiments are repeated until the experiment fons
at least 95% of the desired time intenBENCH1()

X/Ihz determines the experimental results are too noisy
to provide a reliable answer by calculating the MHz
twice, once using the minimum values for each

expression, and once using the next larger valués. Ultra-l, Ultra-1l), MIPS (R4000, R5000, R10000),
the difference between the two results is less fi#4n Cyrix, Cray T3E, and Motorola 68020. It has also
or 1MHz, then the data is accepted. Otherwisbz been tested on a wide variety of operating systems,
assumes the results are invalid and retries thecluding: HP-UX, IRIX, Linux, SunOS, AlX, BeOS,
experiments, or on the third failure, it tells tger the MkLinux, MachTen, OSF1, Unicos/mk, FreeBSD, and
system is too busy. Plan9.

To reduce the impact of bursts of independent #gtiv We released an alpha versionnatizto comp.arch and

on the experimental resultsnhz does not use the comp.benchmarks and a cast of volunteers, and
standardBENCH() macro. BENCH() takes all the received the results for 643 runsmofiz The output of
measurements for a single expression, so a bursttbis alpha version ahhzincludes all the data gathered
activity might affect all the timing intervals farsingle by mhz Out of 643 runs, 624 runs contained data that
expression. To spread the experimental error theer would have been accepted loghz as valid. Mhz

all the expressions and maximize the chance oihgett calculated the processor speed within 5% in 611 of
some valid results for each expression, the da824 runs. Mhz had an error greater than 5% in 13
collection is done in thenain() procedure in a pair runs. Of those 13 runs, 10 were from one macthiat t
of nested loops. The inner loop iterates over thead another CPU-bound process consuming 50% of
expressions and the outer loop iterates over tliee processor time, andhzs result was 50% of the
measurements. clock speed.

filter_data() discards results that are obviouslyOf the remaining 3 experiments, one was on a Cray
outliers. These are usually caused by optimizatio3E running Unicos/mk, and two were on a Sun
that allow the system to optimize a long loop iato UltraSPARC Il running SunOS 5.5.1. On the Cray,
few instructions, which makes the number of clocknhz reported a clock speed of 633MHz instead of
ticks per expression approach zero. Since the 8DOMHz. The version ahhzused in the experiments
expressions used bmhz require a few instructions included the loop overhead, and the loop overhead
each, all the experimental results should be within measured in this experiment was far too large,
few multiples of each other. Results further fridme artificially depressing the observed times, anthtirfg
median result can therefore be ignored. the apparent clock speed. We fixed the bug irdbp
overhead calculation that caused the problem. h@n t
gun, the measured times are longer than expeatdd, a
he calculated processor speed is lower than exgect
e suspect that there were other processes ruoning

e system.

The GCD is sensitive to even one noisy value. |
order to reduce the impact of any single valordnz

computes the GCD for all valid subsets of the da
points and chooses the mode (most common value) sl
the GCDs. Valid subsets have at least two
independentlata points. Data points amdependent

if the execution differs by one or more clock ticks mhz error

. . 450 - - 100%
Unfortunately, not all data points aiadependent 400 | 909
Some basic C expressions take the same number | s0%
clock ticks, but have slightly different experimaint 350 + 0°
times due to noise. The GCD for a set of nor g 300 i 7004’0)
independentpoints will not be a single clock tick. é 250 -| I 6“’%
classes() ensures that at least two data point £ 5 - 50% 3
appear to have different numbers of clock ticke £ - 40% E
Heuristically, they are considered different if the - - 30% ©
values differ by more than 5%. The subset is igdor 100 1 - 20%
if no two points in a subset differ by more than.5% 50 - 10%

0 - 0%

8 Results Error Percentage

Mhz has been tested on a wide range of Processtrig re 5
including: PA-RISC (PA-7000, PA-7200, PA-8000),
Intel (486, Pentium, PentiumPro, Pentium IlI), DEQ\ histogram ofmhzs error distribution for the 611
Alpha, PowerPC (PPC-603, PPC-604, PPC-604alns is shown in Figure 5. Each bucket represents
AMD (K5, K6), Sun (MicroSPARC, SuperSPARC,

0.5% error. Mhzis accurate, getting resutd% 82%
of the time, and results2% 93% of the time.

Figure 6 includes a selection of results for vasiou
processors and operating systems. Please notthéhat
descriptive information is based on information
provided by volunteers and may not always b
complete.

9 Conclusions

Mhz is a portable C program that can quickly anc
accurately determine the clock speed of the ho
processor. Mhz demonstrates the utility of a simple
mathematical principle: relative primalityMhz also
demonstrates many of the experimental and timin
features found itmbench2.0.

Lmbenchincludingmhz can be downloaded from:
http://www.kernel.org/pub/software/benchmark/Imhbenc

Lmbenchis intended as a toolkit for application and
systems programmers to analyze application ar
system behavior.

10 Acknowledgements

This work would not have been possible without the
support, encouragement, and contributions of theyma
users olmbench We thank the many people who ran
alpha versions aihhzand gave us invaluable feedback
on its performance and accuracy on a wide range
processors and operating systems. The curre
program only works because of their efforts.

We would also like to thank Mary Solomon for her
research into the experimental and analytic metlodds
the nineteenth century chemists and physicists, ar
Prof. Phyllis Brauner and Prof. Len Soltzberg whc
cheerfully shared their knowledge of nineteentt
century chemistry.

Finally, we would like to thank the anonymous
referees, Sigal Ar, Fred Douglis, Darryl Grieg,
William Long, and Udi Manber for reviewing draft§ o
the paper, and Patricia Markee for her extensiv
editorial assistance.

11 Bibliography
[1] Larry McVoy and Carl Staelinmbench: Portable
tools for performance analysi®)SENIX technical

conference. San Diego, CA. January 1996. pi
279-284.

M achine Operating MHz
stem
Motorola 6804 4.4BSD-Lite 25
Intel i38€ Linux 2.0.3:¢ 33
Intel i48€ FreeBSD 2.2. 33
Sun 4n SunOS 4.1. 36
DEC R300! ULTRIX 4.3 40
Sun SPARCstation-. | SunOS 5.5. 40
Sun SPARCstation-: | SunOS 5. 50
IBM POWERZ AIX 59
Sun Superserver-64 | SunO¢ 60
HP 73(HP-UX 10.2(66
Sun SPARCstation SunO¢ 70
HP 71¢ HP-UX 9.0t 80
Sun SPARCstation SunO¢ 85
Intel Pentiun Linux 1.2.12 2]0)
Sun SPARCstation-: | SunOS 5.5. 90
Apple PowerMac 60: | Machter 10C
HP 715/10 HP-UX 9.0 10C
HP 725/10 HP-UX 9.0 10C
Intel Pentiun Plan¢ 10C
Intel Pentiun Linux 2.0.(10C
SGI R4000 IP1 IRIX 5.3 10C
Sun SPARCstation SunQOS 5. 11C
Cyrix 6x86-P150: Linux 2.0.3:¢ 12C
DEC R440! ULTRIX 4.4 12C
HP 77(HP-UX 10.2(12C
Sun SPARCstation-: | SunOS 5.5. 12E
Cyrix Linux 2.1.6(133
DEC AlphaAXP OSF1 3. 138
Sun Ultra-: SunOS 5. 143
DEC Alpha 34 OSF1 3. 144
DEC AlphaAXP OSF1 3. 15C
Intel Pentiun Linux 2.0.C 16€
Sun SPARCstation-: | SunOS 5.5. 16€
Sun Ultra-: SunOS 5.5. 167
Sun Ultra-: SunOS 5. 167
DEC AlphaAXP OSF1 3. 17t
BeMac PowerPC 60 | BeOsS 18C
HP 78(HP-UX 10.2(18C
SGI R5000 IP3 IRIX 6.3 18C
DEC AlphaAXP OSF1 3. 19C
DEC AlphaAXP OSF1 3. 20C
HP 89¢ HP-UX 10.2(20C
Intel PentiumPr SunOS 5.5. 20C
Intel PentiumPr Linux 2.0.3: 20C
MIPS 1000! ReliantUNIX-Y 20C
SGI R4000 IP2 IRIX 6.2 20C
Sun Ultra-: SunOS 5. 20C
Sun Ultra-: SunOS 5.5. 20C
IBM PowerPC604 AlX 232
Sun Ultra-Enterpris SunOS 5.5. 24¢
Sun Ultra-: SunOS 5. 29€
Cray T3E Unicosmk 2.0.2.1. 30C
IBM PowerPC 604 AlX 332
Cray T3E-120 Unicosmk 2.0.2.1. 60C
Dec Alphe Linux 2.0.3(60C

Figure6

[21 R. A. Millikan, The Isolation of an lon, a I[mbench API
Precision Measurement of its Charge, and th8encH(loop_body, enough):

Correction of Stokes’s Lawlhe Physical Review
XXXII(4). April 1911.

[3] Frederick SoddyThe Interpretation of the Atam
G. P. Putnam’s Sons, New York, New York. 1932.

[4] Arthur Schuster,The Progress of Physics during
33 years (1875-1908) Cambridge University
Press, Cambridge, United Kingdom. 1911.

[5] David A. Patterson, John L. Hennesy and David
Goldberg,Computer Architecture: A Quantitative
Approach Second Edition. Morgan Kaufman.
1996. pp. 221-354.

[6] Anne P. Scott, Kevin P. Burkhart, Ashok Kumar,
Richard M. Blumberg, and Gregory L. Ranson
Four-Way Superscalar PA-RISC Processors
Hewlett-Packard Journal 48(4). August 1997.

[7] PowerPC 604 Risc Microprocessor,void
http://www.chips.ibm.com/products/ppc/DataSheet
s/604/604-180.htmDune 1997.

[8] PentiumPro processor dynamic execution,
http://pentium.intel.com/procs/ppro/info/dynexec.h

[9] B. Ramakrishna Rau and Joseph H. A. Fisher
Instruction-Level Parallel Processing: History, void
Overview, and Perspective Journal of
Supercomputing 7(1/2). 1993

[10] William Press, Saul Teukolsky, William
Vetterling, and Brian Flannerjyumerical Recipes
in C: The Art of Scientific ComputingSecond
Edition. Cambridge University Press, Cambridge,
United Kingdom. 1992. pp. 656-706.

[11] Raj

void

void

Jain, The Art of Computer

This macro is the standard interface Itebench
2.0s timing subsystem. It repeats the experiment
TRIES times and reports the median value, unless
enough is larger than 100milli-seconds. It uses th
macro BENCH1() to run each experiment. |If
enough is non-zero, the experiment must run for
at leasienough micro-seconds.

BENCH1(loop_body, enough);

BENCH1() is the heart of the benchmarking
system. It automatically calculatesough and
actually benchmarki®op_body . It ensures that
each experiment is run long enough that the timing
errors are minimized. Environment variables
ENOUGHTIMING_O, and LOOP_Oaffect the
initialization of the timing parameters.

uint64 get_n();

Returns the number of timdsop_body was
executed during the timing interval.

milli(char *s, uint64 n);
Print out the time per operation in milliseconds.
is passed as a parameter because each
loop_body could contain several instantiations
of the operation, and there has to be a way to
adjust the parameter.

micro(char *s, uint64 n);
Print out the time per operation in microseconds.

nano(char *s, uint64 n);
Print out the time per operation in nanoseconds.

mb(uint64 bytes);
Print out the bandwidth in megabytes per second.

kb(uint64 bytes);
Print out the bandwidth in kilobytes per second.

Tutorial
SystemsCreating benchmarks using thembench 2.0timing

Performance AnalysisJohn Wiley and Sons, New harness is easy. There are two attributes thatnass

York, New York. 1991. pp. 183-186.

[12] Russell Langley, Practical Statistics Simpl
Explained. Dover, New York, New York. 1970.
pp. 51-88.

critical for performance, latency and bandwidthd an
Imbench 2.3 timing harness makes it easy to measure
Yand report results for both.

The timing harness can be used to quickly create

accurate performance measurements for a wide range
of features and applications. For example, ifgnai

Appendix

processing application needs a fast FFT routine, th
The Imbench 2.0 benchmark API is specified, with Programmer

could take several implementations,

descriptions of the timing and reporting functionis. quickly benchmark them, and choose the fastest.
addition, a brief tutorial on constructing benchksar Alternatively, the program could include a libraoy
using|mbench 2.0s included. Please see tingbench FFT routines and automat|ca”y choose the fastest

2.0 release for the
documentation.

complete sources

anBased on the routine’s performance on the particula
hardware.

There are a number of factors to consider when

building benchmarks.

The most important thing to

understand is what, exactly, you are trying to meas measuring bandwidth are very similar to those for
If you are trying to find out how long it takes tomeasuring latency. In many cases the only difiegen
generate a pseudo-random number, multiply twis the function used to report the results.

500x500 matrices, or copy 1MByte, thiembenchcan . - .

help you accurately measure and report the'ftort. exa;mple,bqopyé) ¢ |s|tth € ;tradlﬂona!l C-Ilprac;y
information quickly. You should also understand théoeli:;lieoritc Osggngmsaiurablls anﬁgcteag\'/grgﬁuz stem
conditions under which you would like to measure th ; : y al | bench ky A
performance. For example, if you want to know ho eriormance In some commerciat benchmarxs.

long it takes to copy 4KBytes, then you shoulc?'mple benchmark to measureopy() performance

understand whether you want to find out how long {E"ght look like:

takes to copy 4KBytes from and to the cache, anfrol #include “bench.h”

memory to the cache. z fidefine M (102471024)
. . . 4 in(int argc, char *

It is useful to form a hypothesis about the feaheimg 5 main(int argc, char *argv[]

measured. Using previously gathered information, § char *a=malloc(M);
. . 4 char *b = malloc(M);

may be possible to accurately predict the perfooman g putenv(“LOOP_0=0.0");

Then, build the benchmark, measure the performan@%, BEN'\?;'(biorJy(?,b,M), 0);

and test the hypothesis. If the hypothesis is wrgou 77 2;5(0); 9et.n0):

will have learned something new. 12 }

Lines 6 and 7 allocate two 1MByte chunks of memory.
Measuring latency Line 9 benchmarkscopy() ’'s performance while

. . copying 1MByte of data from chun& to chunkb.
Latency is usually important for frequently exe«:theLine 10 reports the bandwidth in megabytes per

short operations, such as memory accesses. $iisce | . ; - .
. .~ second; during the benchmark timing interval
so easy to measure latency usiimgbench 2.0 it
becomes possible to quickly answer questions th
arise during system design. For example, simudatofhere are some problems with this particular
may use random numbers frequently, so randobenchmark because of caching effects when the
number generator performance may be important toemory cache is large. Since theopy() will be
overall simulator performance. It takes a few rtéisu repeated several times during benchmarking, tha dat
and a few lines of code to measure the performahceis more likely to be in the cache, so the benchmaltk

%?Opy() copiedM*get_n() bytes.

a random number generator: measurebcopy() performance for cached data. If
1 Finciude “bench i one is trying to measurbcopy() performance for
2 int non-cached data, this benchmark would need to be
3 E“a'”('“t arge, char *argv[]) modified. For example, allocating larger segmagits
5 putenv(“LOOP_0=0.0"); memory (e.g. 16MBytes) and only copying 1MByte at
g ﬁi’?&mgﬁgfggp, %)t: ") a time would increase the likelihood of measuring
) exit(0); » geLnuy cold-cache results. The modified benchmark would
9 } look like:
Line 1 includes thédmbenchheader, which contains 1 #include “bench.h”
the macros, type definitions, and function declaret z Aaefine N %5024*1024)
for Imbench Line 5 sets the environment variables int
LOOP_O to 0.0 solmbench won't waste time 2 main(int argc, char *argv(])
) - : {
calculating the negligible loop overhead. Linegs 7 int 0=0;
the BENCH() macro to benchmark theand48() 8 char *a=malloc(M * N);
.) . 9 char *b = malloc(M * N);
function. Since thdENCH() parameteenough is 10 putenv(“LOOP_0=0.0"):
i i 1 BENCH(bcopy(a+o,b+0);
0, I'mbenchV\{nI automatlcally calgulate the neces:saryl2 (o:%g M)%(N*)M);’O);
timing duration. Line 7 usesicro() to report 13 mb(M * get_n();
[rand48() s performance in micro-seconds. ig) exit(0);

. . Line 2 defines a new constant, N, which is the neimb
Measuring bandwidth of unique segments the benchmark will use. Line 7
The other major component of system performance defines the offset variable, o, which is used tece
bandwidth, which is of primary importance whilethe appropriate segment. Lines 8 and 9 allocate th
moving large chunks of data. The mechanics @hemory for the segment. Thmopy() in line 11

copies data from one segmentaofo a segment df. overhead will not be included in the total cost. &ith
The offset is updated in line 12 to point to thextne comparing the sequenceopen/mmap/bcopy/
segment, modulo the number of segments. close with open/read/close , read is faster
than mmapfor small files, typically under 32K. In
. addition, not all operating systems provide reaeaah
Statistics for mmayped files, which can result in a 2-3x
It is important to understand the phenomena beingerformance penalty fanmapduring large sequential
measured. Some features, such as clock speed, r@ad accesses.
constant and variance in the results is caused

experimental noise. Other features, such as cbnt&(easu”ng the wrong operation

The minimum result may be used in place of th&@ches and caching effects are the usual source of
median result in some circumstances. For exampRyoblems. lItis very important to decide whetheuy
when measuring memory latency as a function dfant to measure warm-cache or cold-cache
actively used memory size, the median result wouRgrformance. In general it is appropriate andegasi
usually be used because of the variance added 'Bgasure warm cache performance. There are other

caching effects. However, when determining theneac Ways to measure the wrong operation, such as atpwi
size, the minimum result might be used. overhead to dominate the measurement. For example,

mhz demonstrateémbenchs ability to measure very
Special care must be taken when subtracting twhort operations, but we limited the loop overhtad
measurements, which is usually done when subtactifey percent by repeating each operation many times
overhead from an operation. The error in thgjthin the measurement loop. Otherwise the loop

subtracted result will be larger than the errorthe gyerhead could have been the dominant featureein th
joint measurement since the error in the overhegfeasurement loop.

measurement must be added to the joint error. ,Also)
the subtracted result is smaller so the percergage Multi-process and networking benchmarks —are
has increased. If the overhead is a reasonaldiioina €SPecially prone to errors. Obscure aspects dérsys

of the total measurement, then the error in thelresdesign can profoundly impact the benchmark. For
can be significant. example, the behavior of common TCP

implementations during connection establishment
. limited the rate clients generated requests and
Common pitfalls completely invalidated some common HTTP

Sometimes benchmarks measure effects other than fgfichmarks because the HTTP clients only generated
intended result. There are many ways to make subtiequests as fast as the server could service tfre.

or even egregious, mistakes in benchmark desigdgnchmarks never measured server performance
Two common mistakes are measuring partiequ””g server overload, when the server spendsfall
operations or measuring the wrong operation. Als§$ time acknowledging TCP connections.

think about other factors that can affect the tssul

§uch as: cachlng effects, physical page pIacemﬂt %or moreinformation

its effect on direct-mapped caches, process scimgdul

and cache-stealing in multiprocessors. There are a variety of sources of information on
_ _ _ statistics, benchmarking, and system behavior.
Measuring partial operations [5,10,11,12] are a good starting point for inforioat

The Imbenchdocumentation and man pages can help
ggt you started. Also, tHembenchmicro-benchmarks
are a rich set of examples to use when writing your
own benchmarks. We hope thatbenchwill become

a standard element of programmers’ toolboxes.

Measure the whole operation, not just part offityou
don’t measure the whole operation you can sometim
miss significant features. For example, it is gelhe
accepted thathmapis faster thamead to read a file.
If you measure the time to read a file without iralthg
the open, close , and mmapoverhead, thetmmap
will usually appear to be faster theead . However,
setting up the mapping is not free and some operati
systems, such as Sun’s (the origin mmfmay), have
optimizedread so it is sometimes faster thammap
Unless mmap is included in the benchmark, its

