
mhz : Anatomy of a micro-benchmark

Carl Staelin
Hewlett-Packard Laboratories

Larry McVoy
BitMover, Inc.

Abstract
Mhz is a portable ANSI/C program that determines
the processor clock speed in a platform independent
way. It measures the execution time of several
different C expressions and finds the greatest common
divisor to determine the duration of a single clock tick.

Mhz can be used by anyone who wants or needs to
know the processor clock speed. In large installations
it is often easier to experimentally determine the clock
speed of a given machine than to keep track of each
computer. For example, a platform-independent
database system optimizer may use the clock speed
while calculating the performance tradeoffs of various
optimization techniques.

To run the benchmark long enough for timing to be
accurate, mhz executes each expression in a loop. To
minimize the loop overhead the expression is repeated
a hundred times. Unfortunately, repetition enables
many hardware and compiler optimizations that can
have surprising effects on the experimental results.
While writing mhz, much of the intellectual effort went
into the design of expressions that minimize the
opportunities for compiler and hardware optimization.

Mhz utilizes lmbench 2.0’s new timing harness, which
manages the benchmarking process. The harness
automatically adjusts the benchmark to minimize run
time while preserving accuracy, determines the
necessary timing duration to get accurate results from
the system clock, and measures and accounts for both
loop overhead and measurement overhead. It is used
throughout lmbench 2.0 and can be used to measure
the performance of other applications.

1 Introduction
Mhz is a portable ANSI/C program that determines the
processor clock speed in a platform independent
fashion, which does not depend on any specific
compiler, operating system, or processor. Mhz is part
of the lmbench [1] suite of micro-benchmarks and was
used to develop the new timing methodologies for

lmbench 2.0. Lmbench’s guiding philosophy can be
described as “accuracy, speed, portability, and
simplicity.” Each of these tenets impacted the design
of mhz.

At first glance, determining the processor clock speed
seems simple; time the execution of a short number of
instructions and divide by the number of instructions.
There are several problems with this simple approach,
such as the lack of standard clocks with enough
resolution to measure the duration of a few instructions
accurately. In addition, mhz is written in portable
ANSI/C that can be compiled into an unknown
sequence of instructions of unknown length.

There are a variety of problems that need to be
addressed in order to accurately measure time intervals
on various processors under various operating systems.
On processors with cycle times of 5 nano-seconds,
some operating systems have low-resolution clocks, as
poor as 10,000,000 nano-seconds, while others have
1,000 nano-second resolution clocks.

Lmbench 2.0 incorporates an entirely new timing
harness which automatically controls the experimental
system to provide accurate results on all platforms.
For example, it determines how long experiments have
to run in order for timing results to be accurate within
1% and then controls the experiments so they run just
that long. It also automatically corrects for various
overheads, such as loop overhead and timing
measurement overhead. Considerable effort went into
preserving accuracy while minimizing run time, which
has paid off in shorter run times (with the same or
better accuracy as lmbench 1.0) on systems with
relatively fine grained clocks.

Determining the clock speed in a platform independent
manner is surprisingly difficult because there is no way
to measure one clock tick. The inspiration for the
solution was based on hazy memories from high school
chemistry and physics, of techniques used by
nineteenth century chemists and physicists to
determine the atomic weight of elements and the
charge of an electron [2,3,4].

Section 2 describes lmbench 1.0’s solution and its
limitations, while Section 3 provides some background
on computer architecture and how it affects mhz.
Sections 4 and 5 introduce and describe the newer
solution. The experimental methodology used by
lmbench in general and mhz in particular are described
in Sections 6 and 7, and the results are presented in
Section 8. The Appendix contains a description of the
lmbench 2.0 benchmarking API and a brief tutorial on
writing benchmarks using the lmbench API.

2 lmbench 1.0’s solution
Lmbench 1.0 includes a version of mhz that was
accurate for a wide range of processors, but contained
processor-specific code. It has a single loop, which
runs for about a second. The clock speed is the
(estimated) number of clock ticks divided by the
elapsed time. The number of clock ticks is
approximated by multiplying the number of loop
iterations (say 10,000) by the number of expressions
per loop (1000) and the number of clock ticks per
expression. The number of clock ticks per expression
is known for some processors and assumed for others.

Figure 1 contains pseudo-code for a simple mhz that
works for many existing processors. It assumes that
each shift operation takes a single clock tick. To
determine the processor clock speed, just run the
benchmark long enough (say 10,000 iterations), and
then divide the number of clock ticks (10000 * 1000)
by the duration. Lmbench 1.0’s mhz had processor-
specific expressions selected at compile time based on
the operating system.

Although the original approach worked on about 90%
of the platforms tested, it has several limitations:

• The expressions are processor-dependent.

• The number of clock ticks per expression is not
always known a-priori.

• The loop size is fixed and provides no guarantee
that the timing interval is significant relative to the
system clock resolution.

• The timing loop is only run once, so it is
susceptible to errors caused by other independent
activity on the processor.

An approach that would be accurate on all modern and
anticipated architectures was needed.

2.1 Other approaches
The approach described above requires mhz to know
the number of clock ticks per expression. This is
infeasible since mhz is written in ANSI/C and intended
to run on a wide variety of processors. We could not
find expressions that require a fixed number of clock
ticks on all processors. Clearly a method for
determining the clock speed that doesn’t require such
information is needed.

Several techniques were investigated, such as
measuring the execution time of two expressions,
subtracting the two times, and hopefully getting the
duration of a single clock tick. Other techniques
include: creating loops with different ratios of two
expressions (e.g., a++;a>>=1; and a++;a++;a>>=1
which are 1:1 and 2:1 respectively), and varying the
number of times an expression is repeated within the
loop. Some of the techniques, such as measuring the
difference between two expressions, suffered from the
same weakness as the solution in lmbench 1.0.
Unfortunately, none of these approaches works. At
best, most approaches could give the time to execute a
single expression, which can already be measured.

3 Computer architecture
Modern computer architectures are complicated and
highly optimized. Many of these optimizations are
useful for general purpose programs, but can wreak
havoc on our micro-benchmark. They make it nearly
impossible to predict exactly what happens during
execution.

3.1 Superscalar
Super-scalar processors have multiple computational
units and can execute multiple operations in a single
cycle. Super-scalar processors can also overlap the
execution of adjacent instructions, which means the
average number of clock ticks per instruction is non-
integral [5].

main(int ac, char *av[])
{
 register int a = 1, N = 10000;
 double usecs, mhz;

 start();
 for (i = 0; i < N; ++i) {
 a>>=ac; // expression 1
 a>>=ac; // expression 2
 …
 a>>=ac; // expression 1000
 }
 usecs = stop();
 mhz = N * 1000 / (double)usecs;
}

Figure 1

For example, the expression a+=b+a+a might be
compiled into:

ADD r1,r1,r3 ; r3=a+a
ADD r2,r1,r4 ; r4=a+b
ADD r3,r4,r1 ; r1=(a+b) + (a+a)

A superscalar processor with two arithmetic units
could execute three instructions in two clock cycles by
executing the first two instructions in parallel. This
would make the average number of cycles per
instruction 0.66.

3.2 Instruction reorder buffer
Instruction reorder buffers provide limited workflow-
like architecture capabilities to otherwise traditional
processors [6,7,8]. The processor keeps track of inter-
instruction dependencies and executes an instruction as
soon as its data is available (data may be unavailable
because it has not arrived from memory yet or because
it is the result of an instruction that hasn’t completed
yet). Unlike dataflow processors, instruction reorder
buffers have a bounded (and limited) size, so there is a
sliding window of workflow-like capabilities.

Suppose there is a processor with two arithmetic units
and one barrel-shifter and the following assembly
code:

ADD r1,r2,r3 ; r3=r1+r2
SHR r3,1,r4 ; r4=r3>>1
ADD r1,r5,r6 ; r6=r1+r5

During execution the CPU will execute the two ADD
instructions in parallel because all the arguments are
available, and then it will execute the SHR instruction
as soon as the first ADD completes.

Instruction reorder buffers combined with super-scalar
processors provide the system with a great deal of
flexibility and many opportunities for overlapping
computations. Unfortunately, that flexibility makes it
difficult to craft C expressions that preclude parallel
execution.

3.3 VLIW
At least one next generation processor will use a very-
long-instruction-word (VLIW) architecture. Each
VLIW instruction includes several independent sub-
instructions that may execute in parallel [9]. The
compiler optimizer technology for VLIW is complex
because of this new parallelism.

The next section explains why we see no reason for
mhz to work incorrectly on VLIW processors.

4 mhz solution
Mhz’s computes the clock speed using the greatest
common divisor (GCD) of the execution time for nine
expressions, assuming that the execution time for each
is an integral multiple of the time taken by a single
clock tick. This technique makes no assumptions about
the number of clock ticks for any single instruction or
the number of instructions used to implement a given
expression, except that it executes in an integral
number of clock ticks.

To ensure that each expression executes in an integral
number of clock ticks (on average), mhz uses tightly
interlocked operations so processors cannot overlap
the execution of the expressions.

Mhz can compute the CPU cycle time if the compiler
generates at least two instruction sequences with
relatively prime cycle counts. Mhz uses several
different sequences to increase the chance that two
sequences will have relatively prime cycle counts on
any given architecture.

The relatively prime condition is necessary for the
greatest common divisor method work. If all the cycle
counts have a common factor (e.g. 2), then the
apparent CPU speed will be reduced by that common
factor. Also, if there is so much variability in the data
that there is no apparent GCD, then mhz will return a
result that is too large. The instruction sequences are
chosen so that there are almost always two sequences
with relatively prime lengths.

The processor's clock speed is the GCD of the
execution times of the various instruction sequences.
For example, suppose mhz is trying to compute the
clock speed for a 120MHz processor, and there are
two instruction sequences:

1. SHR (2 cycles)
2. SHR;ADD (3 cycles)

If the execution times are:

1. SHR 11.1ns (2 cycles)
2. SHR;ADD 16.6ns (3 cycles)

The GCD is 5.55ns and the calculated clock speed is
indeed 120MHz. Aside from problems caused by
experimental noise, this method should always work
with instruction sequences that have relatively prime
cycle counts.

Suppose the two instruction sequences have cycle
counts that are not relatively prime:

1. SHR 11.1ns (2 cycles)
2. SHR;ADD;SUB 22.2ns (4 cycles)

The GCD will be 11.1ns, and the clock speed will
appear to be 60MHz, which is the true speed,
120MHz, divided by the common factor, 2.

Mhz uses nine expressions, which have been carefully
designed to minimize this problem. Finding
expressions that execute in an integral number of clock
ticks on all processors is non-trivial and is addressed
below.

4.1 Greatest common divisor
Finding the GCD of the expression execution times
can be non-trivial. Since integer arithmetic does not
apply to an array of real-valued observations, mhz can
not do integer arithmetic to find the GCD. In addition,
the observations contain noise, which can obscure the
true GCD. Mhz can, however, compute the GCD by
assuming that each C expression executes in an
integral number of clock ticks.

Assuming a single clock tick is b nano-seconds, each
experimental observation, ej, can be converted into an
integer number of clock ticks, cj, where cj = floor (ej

/ b + 0.5). The set of points {cj,ej} should be nearly
linear, and the linear regression should have y-
intercept 0 and slope b.

Mhz cannot directly calculate b, but it can make a
series of educated guesses and choose the best guess.
The guesses, bi, are based on the fact that each

experimental time is an integral multiple of b, and are
created so bi ≡ min(ej) / i. The least-mean-squares
linear regression of {cj,ej} gives a better estimate of b
than the initial guess bi because it is based on all the
experimental observations.

The best bi can be chosen using the chi-squared error
of the least-mean-squares linear regression. When bi >
b, the chi-squared error will be large because some
observations will have poor fits. When bi ≈ b (within
the usual experimental error), the chi-squared error
will represent the experimental error, and will be far
smaller than errors for bi > b. When bi < b and b is a
multiple of bi, the chi-squared error will be equal to or
smaller than the error of bi because noisy observations
may have a slightly improved fit.

Since multiples of the first best fit will have an equal
or smaller chi-squared error measure, mhz chooses the
first fit that significantly reduces the chi-squared error.
Comparing the (current) minimum chi-squared error
with an i2 weighted chi-squared error favors previous
minimum chi-squared errors and prevents mhz from
choosing multiples of the correct result.

Figure 2 contains the routine gcd() , which computes
the GCD. It finds the minimum execution time,
min_e . construct_dataset() creates the
dataset yj, which includes all the experimental
measurements ej, and adds data points with the
difference between each pair of observations. To
ensure that the regression runs through the origin, it
also adds the point (0,0). For each integral number of
clock ticks, i, i∈ {1, 2, …, 6}, it computes bi, the points
{ cj,yj}, and the least-mean-squares linear regression
[10]. The linear regression gives the chi-squared error
and a and b such that: y = a + bx. If the weighted chi-
squared error is less than the minimum chi-squared
error, gcd() discards the previous result and saves
the current minimum.

5 Atomic expressions
Mhz needs simple C expressions that can be strung
together without being optimized out of a loop by a
smart compiler. The key is to prevent the processor
from computing expressions in parallel or overlapping
execution of adjacent expressions. Thus each C
expression and sub-expression must depend on the
result of the previous expression and it must have no
sub-expressions that can begin execution before the
completion of the previous expression. Otherwise the
processor may utilize the inherent parallelism in the
expression and overlap the execution of adjacent
instantiations of an expression.

double
gcd(double e[], int esize)
{
/* assumption: shortest expression has
 * no more than MAX_COUNT instructions */
#define MAX_COUNT 6
 int i, j, size;
 double min_e, min_chi2, result, a, b, chi2;
 double *y, *x = (double *)
 malloc(esize*esize*sizeof(double));

 /* find the smallest value */
 min_e = double_min(e, vsize);

 /* {e[j]:j},{|e[j]-e[i]|:i,j,i!=j},{0,0} */
 construct_dataset(e, esize, &y, &size);

 for (i = 1; i < MAX_COUNT; ++i) {
 b = min_e / i; /* clock tick guess */
 for (j = 0; j < size; ++j)
 x[j] = floor(y[j] / b + 0.5);

 /* regression of the samples */
 regression(x, y, size, &a, &b, &chi2);

 if (i == 1 || i*i*chi2 < min_chi2) {
 result = b;
 min_chi2 = chi2;
 }
 }
 free(x);
 free(y);
 return result;
}

Figure 2

This dependency is critical to the design of the C
expressions. For example, the expression a+=a
satisfies the dependency criteria because the next
instantiation of the expression cannot be evaluated
until the current expression has completed. The
expression a+=b+c is not completely dependent
because the b+c sub-expression may be calculated in
parallel with the previous instantiation’s a+(b+c)
sub-expression.

5.1 Compiler interactions
Designing the expressions that execute in an integral
number of clock ticks (on average) with enough
variety to ensure that there are two expressions with
relatively prime cycle counts was difficult. The
problems were increased by the compiler and
processor optimizations and by compiler bugs and
limitations.

We experimented with instruction sequences that use
pointer accesses to cached memory locations and
multi-variable integer arithmetic. Nearly all such
expressions are optimized by modern processors that
utilize super-scalar processing and instruction
rescheduling to overlap execution of adjacent instances
of the same expression.

Optimizing compilers gave us a number of headaches
because they are able to optimize away many
candidate expressions, if they are in simple loops. For
example, the expression a++; was easily optimized.
So we needed to find mathematical expressions that
compiler writers either could not or have not bothered
to optimize out of a loop.

Sometimes, the optimizer simply discarded the entire
loop because the result was not used anywhere.
Consequently, lmbench is sprinkled with calls to
use_result() , a dummy procedure whose sole
purpose is to fool compilers into thinking its argument
is used somewhere else in the program.

Nearly all expressions using several integer variables
were useless because they did not interlock correctly,
i.e., advanced processors could overlap sub-
expressions of the same expression or sub-expressions
of adjacent expressions, and consequently, the average
number of instructions per expression was non-
integral.

There were a few arithmetic expressions that gave one
or more compilers trouble (e.g. core dump, infinite
loop, or erroneous output):

• a>>=a;
• a+=b+a;

• a+=b;b+=a;

One or more compilers optimized away the following
C expressions:

• a+=a; // ADD optimized to a=0
• a&=a; // AND optimized away completely
• a^=a; // XOR optimized to a=0
• a+=b; // ADD optimized to a+=b+b+b+…
• a+=a;a-=a; // ADD;SUB optimized to a=0

The expression a+=a can be optimized to a=0
because our loops contained one hundred copies of
a+=a in a single iteration of the loop. Each instance
of a+=a is equivalent to a<<=1 for unsigned integers.
Since C integers have 32 bits (or at most 64 bits), and
since one hundred instances of a+=a is equivalent to
a<<=100 , the whole loop can be optimized to the
single expression a=0 .

The loop containing the expression a&=a can be
optimized away because a&=a doesn’t change the
value of a. On the other hand, a^=a is equivalent to
a=0 , so the loop containing that expression can simply
be replaced by the single expression a=0 . Similarly
the sequence a+=a;a-=a; is equivalent to a=0 since
a-a=0 .

The expression a+=b provides a wide variety of
possible optimizations when put in a loop with a
hundred repetitions. One simple optimization is to set
a+=b+b+b+b+… This allows superscalar hardware to
execute multiple sub-expressions in parallel, which
means that the number of clock cycles needed to
compute the sum is not necessarily a multiple of 100.
In addition, compilers may optimize the inner loop to
a+=100*b .

5.2 mhz expressions
To maximize the possibility that cycle counts will be
relatively prime, nine expressions were selected. For
example, the expressions a>>=b and a>>=a+a differ
by a single ADD operation, so on most machines their
execution will differ by a single clock tick. There are
similar small differences between many of the
expressions.

The expressions are:

1. p=*p;
2. a^=a+a;
3. a^=a+a+a;
4. a>>=b;
5. a>>=a+a;
6. a^=a<<b;
7. a^=a+b;
8. a+=(a+b)&07;
9. a++;a^=1;a<<=1;

Figure 3 shows how the expressions are embedded in
the timing harness. Each MHZ() macro creates both
the function used to measure the execution time of a
given expression and the corresponding simple
function. Additional pieces of the harness, such as the
experimental timing subsystem, are explained below.

Each expression is repeated 100 times in a loop
embedded in a simple function (e.g., _mhz_1()).
Another function (e.g., mhz_1()) uses the standard
lmbench timing macro, BENCH1(), to measure the
duration of each iteration of the loop in the
corresponding simple function. The loop is embedded
in a separate subroutine to increase the likelihood that
the compilers would utilize register variables as
intended.

Different processors can execute the expressions using
different instructions and in varying number of clock
ticks, but in general there are at least two expressions
taking relatively prime number of clock ticks. Also, in
each case, the various pieces of each expression are
completely dependent and there are no two sub-
expressions that can be executed in parallel. Adjacent
instantiations of expressions are completely dependent
so a processor cannot overlap execution.

6 lmbench 2.0 timing harness
The single most important element of a good
benchmark suite is the quality and reliability of its
measurement system. Lmbench 2.0 includes a timing
harness that manages the experimental timing process
to produce accurate results in the least possible time.
Lmbench 2.0 gets more accurate results in less time
than lmbench 1.0 by considering clock resolution,

auto-sizing the duration of each benchmark, and
conducting multiple experiments. Methods for
measuring and eliminating several factors that
influence the accuracy of timing measurements, such
as the system clock resolution, are described below.

The timing harness includes two macros, BENCH()
and BENCH1(), which provide a uniform method for
conducting experiments. BENCH1() does one
experiment and saves the result, while BENCH()does
eleven experiments using BENCH1() and saves the
median result. Benchmarked operations must be
idempotent so they can be repeated indefinitely.

Figure 4 shows a complete example of a benchmark
that measures the performance of lrand48() and
reports its performance in micro-seconds. Please see
the Appendix for a description of the lmbench 2.0
benchmarking API and a brief tutorial on writing
benchmarks using the API.

6.1 Clock resolution
Lmbench uses gettimeofday() to measure the
time and compute the time intervals. Unfortunately,
gettimeofday() has varying resolutions across
different flavors of UNIX, and there is no standard
method for querying the operating system to find the
resolution of the system clock.

Lmbench includes a module, compute_enough() ,
that automatically computes the time interval required
to reduce the timing error (due to clock resolution) to
less than 1%. The module increases the timing interval
until small variations in the measured work produce
correspondingly small variations in the measured time.
If a 100 milli-second interval is insufficient, the system
uses 1second timing interval.

To verify that a timing interval is accurate to within
1%, it determines how many loop iterations consume
the desired time, and then jiggles the number of
iterations by 0.5% to time the duration of 100.0%,
100.5%, 101.0%, and 101.5% iterations. If the times
are 100.0±0.1%, 100.5±0.1%, 101.0±0.1%, and
101.5±0.1%, the timing interval is presumed to be
accurate to within 1%.

#define MHZ(M, expression) \
void \
mhz##M (register long n, \
 register TYPE **p, \
 register TYPE a, \
 register TYPE b) \
{ \
 for (; n > 0; --n) { \

HUNDRED(expression) \
 } \
 use_pointer(p + a + b); \
} \

\
void \
mhz_##M(int enough) \
{ \
 TYPE i = 1; \
 long n = 1; \
 TYPE *x=(TYPE *)&x, \
 TYPE **p=(TYPE **)x; \
 mhz##M(1, p, 1, 1); \
 BENCH1(_mhz_##M(n,p,i,i);n=1;, enough) \
 save_n(100 * get_n()); \
}

Figure 3

#include "bench.h"
int
main(int argc, char *argv[])
{

BENCH(lrand48(), 0);
micro("lrand48()", get_n());
exit(0);

}

Figure 4

6.2 Timing overhead
Once the timing interval “enough” has been computed,
the overhead of the timing measurements must be
measured. The overhead is significant only on systems
where the timing interval is relatively short.

The timing overhead is measured by benchmarking
gettimeofday() . In lmbench the timing overhead
is the time to exit gettimeofday() at the start of
the timing interval plus the time to enter
gettimeofday() at the end of the timing interval,
so the time to call gettimeofday() represents the
timing overhead.

6.3 Loop overhead
Sometimes, the overhead associated with the for()
loop can be significant compared to the duration of the
benchmarked feature, so the loop overhead needs to be
measured and subtracted from the execution time. As
far as possible, all micro-benchmarks in lmbench 2.0
have been designed to minimize the impact of loop
overhead on experimental results. Micro-benchmarks
measuring fast operations have multiple instances of
the operation in the loop to reduce the relative
magnitude of the loop overhead.

To compute the loop overhead, lmbench uses two
loops, the first with one instance of an expression and
the second with two instances of the expression, giving
two equations:

Where T1, T2 are the measured execution times and N1,
N2 are the loop iteration counts. These equations can
be solved for the loop overhead:

6.4 Loop auto-sizing
Lmbench 1.0 uses fixed-size loops for many of the
benchmarks. The loop sizes were hand-selected to run
for about a second on contemporary processors. With
processor speeds doubling every eighteen months,
lmbench needs loops that can automatically scale
themselves so the benchmark’s accuracy is not
compromised by faster processors.

All timing intervals must have the necessary accuracy,
but the system does not know a-priori how many
iterations are needed to run for the desired time. The
experiments are repeated until the experiment runs for
at least 95% of the desired time interval. BENCH1()

adjusts the iteration count after each timing interval. If
the measured time is less than 150 microseconds, then
the iteration count is multiplied by 10, otherwise the
iteration count is scaled by 1.1 times the ratio of the
desired time to the measured time.

Some systems with low-resolution clocks return small
integral values for intervals smaller than the clock
resolution. Lmbench assumes that all timing results
smaller than 150 microseconds are meaningless and
multiplies the iteration count by 10. Otherwise
lmbench can use the timing information to compute the
iteration count needed for the timing interval to be
long enough. Since the timing information has
experimental noise, lmbench sets the iteration count a
little larger than necessary.

6.5 Multiple experiments
Lmbench 1.0 reports the results for only one timing
interval. As a result, lmbench 1.0 is vulnerable to
independent activity that steals processor time from the
benchmark. In practice, the timing intervals are so big
that the impact on the results was minimal, unless there
is substantial activity. However, lmbench 2.0’s shorter
timing intervals enabled by the loop auto-sizing and
clock resolution detection mean that relatively little
independent activity could have a significant impact on
a single experiment.

Lmbench 2.0 performs multiple experiments and
reports the median result. In general, the median is
more robust and stable in the face of noise than the
average result [10,11,12].

7 Making mhz really work
Mhz has different requirements and sensitivities than
the rest of lmbench. Mhz is more sensitive to small
errors in any given experiment than any of the other
benchmarks in lmbench. As a result, mhz includes a
variety of techniques to detect or minimize the impact
of noisy data on its accuracy. Mhz needs the ability to
detect when the data is too noisy to generate an
accurate result and to detect obviously erroneous data.
Mhz also needs to be insensitive to single experimental
results that are inaccurate.

Since mhz measures the clock speed, and since most
experimental errors increase the measured time, mhz
uses the minimum experimental result for each
expression, rather than the more standard median.

Mhz determines the experimental results are too noisy
to provide a reliable answer by calculating the MHz
twice, once using the minimum values for each

2

2

1

1
2

 _
N

T

N

T
overheadloop −=

) 2 _(

) _(

22

11

workoverheadloopNT

workoverheadloopNT

+=
+=

expression, and once using the next larger values. If
the difference between the two results is less than 1%
or 1MHz, then the data is accepted. Otherwise, mhz
assumes the results are invalid and retries the
experiments, or on the third failure, it tells the user the
system is too busy.

To reduce the impact of bursts of independent activity
on the experimental results, mhz does not use the
standard BENCH() macro. BENCH() takes all the
measurements for a single expression, so a burst of
activity might affect all the timing intervals for a single
expression. To spread the experimental error over the
all the expressions and maximize the chance of getting
some valid results for each expression, the data
collection is done in the main() procedure in a pair
of nested loops. The inner loop iterates over the
expressions and the outer loop iterates over the
measurements.

filter_data() discards results that are obviously
outliers. These are usually caused by optimizations
that allow the system to optimize a long loop into a
few instructions, which makes the number of clock
ticks per expression approach zero. Since the C
expressions used by mhz require a few instructions
each, all the experimental results should be within a
few multiples of each other. Results further from the
median result can therefore be ignored.

The GCD is sensitive to even one noisy value. In
order to reduce the impact of any single value, mhz
computes the GCD for all valid subsets of the data
points and chooses the mode (most common value) of
the GCDs. Valid subsets have at least two
independent data points. Data points are independent
if the execution differs by one or more clock ticks.

Unfortunately, not all data points are independent.
Some basic C expressions take the same number of
clock ticks, but have slightly different experimental
times due to noise. The GCD for a set of non-
independent points will not be a single clock tick.
classes() ensures that at least two data points
appear to have different numbers of clock ticks.
Heuristically, they are considered different if the
values differ by more than 5%. The subset is ignored
if no two points in a subset differ by more than 5%.

8 Results
Mhz has been tested on a wide range of processors,
including: PA-RISC (PA-7000, PA-7200, PA-8000),
Intel (486, Pentium, PentiumPro, Pentium II), DEC
Alpha, PowerPC (PPC-603, PPC-604, PPC-604e),
AMD (K5, K6), Sun (MicroSPARC, SuperSPARC,

Ultra-I, Ultra-II), MIPS (R4000, R5000, R10000),
Cyrix, Cray T3E, and Motorola 68020. It has also
been tested on a wide variety of operating systems,
including: HP-UX, IRIX, Linux, SunOS, AIX, BeOS,
MkLinux, MachTen, OSF1, Unicos/mk, FreeBSD, and
Plan9.

We released an alpha version of mhz to comp.arch and
comp.benchmarks and a cast of volunteers, and
received the results for 643 runs of mhz. The output of
this alpha version of mhz includes all the data gathered
by mhz. Out of 643 runs, 624 runs contained data that
would have been accepted by mhz as valid. Mhz
calculated the processor speed within 5% in 611 of
624 runs. Mhz had an error greater than 5% in 13
runs. Of those 13 runs, 10 were from one machine that
had another CPU-bound process consuming 50% of
the processor time, and mhz’s result was 50% of the
clock speed.

Of the remaining 3 experiments, one was on a Cray
T3E running Unicos/mk, and two were on a Sun
UltraSPARC II running SunOS 5.5.1. On the Cray,
mhz reported a clock speed of 633MHz instead of
600MHz. The version of mhz used in the experiments
included the loop overhead, and the loop overhead
measured in this experiment was far too large,
artificially depressing the observed times, and inflating
the apparent clock speed. We fixed the bug in the loop
overhead calculation that caused the problem. On the
Sun, the measured times are longer than expected, and
the calculated processor speed is lower than expected.
We suspect that there were other processes running on
the system.

A histogram of mhz’s error distribution for the 611
runs is shown in Figure 5. Each bucket represents

mhz error

0

50

100

150

200

250

300

350

400

450

-5 -4 -3 -2 -1 0 1 2 3 4 5

Error Percentage

E
xp

er
im

en
ts

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
um

ul
at

iv
e

Figure 5

0.5% error. Mhz is accurate, getting results ±1% 82%
of the time, and results ±2% 93% of the time.

Figure 6 includes a selection of results for various
processors and operating systems. Please note that the
descriptive information is based on information
provided by volunteers and may not always be
complete.

9 Conclusions
Mhz is a portable C program that can quickly and
accurately determine the clock speed of the host
processor. Mhz demonstrates the utility of a simple
mathematical principle: relative primality. Mhz also
demonstrates many of the experimental and timing
features found in lmbench 2.0.

Lmbench, including mhz, can be downloaded from:

http://www.kernel.org/pub/software/benchmark/lmbench

Lmbench is intended as a toolkit for application and
systems programmers to analyze application and
system behavior.

10 Acknowledgements
This work would not have been possible without the
support, encouragement, and contributions of the many
users of lmbench. We thank the many people who ran
alpha versions of mhz and gave us invaluable feedback
on its performance and accuracy on a wide range of
processors and operating systems. The current
program only works because of their efforts.

We would also like to thank Mary Solomon for her
research into the experimental and analytic methods of
the nineteenth century chemists and physicists, and
Prof. Phyllis Brauner and Prof. Len Soltzberg who
cheerfully shared their knowledge of nineteenth
century chemistry.

Finally, we would like to thank the anonymous
referees, Sigal Ar, Fred Douglis, Darryl Grieg,
William Long, and Udi Manber for reviewing drafts of
the paper, and Patricia Markee for her extensive
editorial assistance.

11 Bibliography
[1] Larry McVoy and Carl Staelin, lmbench: Portable

tools for performance analysis. USENIX technical
conference. San Diego, CA. January 1996. pp.
279-284.

Machine Operating
System

MHz

Motorola 68040 4.4BSD-Lite 25
Intel i386 Linux 2.0.33 33
Intel i486 FreeBSD 2.2.2 33
Sun 4m SunOS 4.1.4 36
DEC R3000 ULTRIX 4.3 40
Sun SPARCstation-10 SunOS 5.5.1 40
Sun SPARCstation-20 SunOS 5.5 50
IBM POWER2 AIX 59
Sun Superserver-6400 SunOS 60
HP 730 HP-UX 10.20 66
Sun SPARCstation-4 SunOS 70
HP 715 HP-UX 9.05 80
Sun SPARCstation-5 SunOS 85
Intel Pentium Linux 1.2.13 90
Sun SPARCstation-20 SunOS 5.5.1 90
Apple PowerMac 603e Machten 100
HP 715/100 HP-UX 9.07 100
HP 725/100 HP-UX 9.07 100
Intel Pentium Plan9 100
Intel Pentium Linux 2.0.0 100
SGI R4000 IP17 IRIX 5.3 100
Sun SPARCstation-5 SunOS 5.5 110
Cyrix 6x86-P150+ Linux 2.0.33 120
DEC R4400 ULTRIX 4.4 120
HP 770 HP-UX 10.20 120
Sun SPARCstation-20 SunOS 5.5.1 125
Cyrix Linux 2.1.60 133
DEC AlphaAXP OSF1 3.2 133
Sun Ultra-1 SunOS 5.6 143
DEC Alpha 347 OSF1 3.0 144
DEC AlphaAXP OSF1 3.2 150
Intel Pentium Linux 2.0.0 166
Sun SPARCstation-20 SunOS 5.5.1 166
Sun Ultra-1 SunOS 5.5.1 167
Sun Ultra-2 SunOS 5.6 167
DEC AlphaAXP OSF1 3.2 175
BeMac PowerPC 604e BeOS 180
HP 780 HP-UX 10.20 180
SGI R5000 IP32 IRIX 6.3 180
DEC AlphaAXP OSF1 3.2 190
DEC AlphaAXP OSF1 3.2 200
HP 899 HP-UX 10.20 200
Intel PentiumPro SunOS 5.5.1 200
Intel PentiumPro Linux 2.0.32 200
MIPS 10000 ReliantUNIX-Y 200
SGI R4000 IP22 IRIX 6.2 200
Sun Ultra-1 SunOS 5.6 200
Sun Ultra-2 SunOS 5.5.1 200
IBM PowerPC604e AIX 233
Sun Ultra-Enterprise SunOS 5.5.1 248
Sun Ultra-2 SunOS 5.6 296
Cray T3E Unicos/mk 2.0.2.12 300
IBM PowerPC 604e AIX 332
Cray T3E-1200 Unicos/mk 2.0.2.12 600
Dec Alpha Linux 2.0.30 600

Figure 6

 [2] R. A. Millikan, The Isolation of an Ion, a
Precision Measurement of its Charge, and the
Correction of Stokes’s Law. The Physical Review
XXXII(4). April 1911.

[3] Frederick Soddy, The Interpretation of the Atom.
G. P. Putnam’s Sons, New York, New York. 1932.

[4] Arthur Schuster, The Progress of Physics during
33 years (1875-1908). Cambridge University
Press, Cambridge, United Kingdom. 1911.

[5] David A. Patterson, John L. Hennesy and David
Goldberg, Computer Architecture: A Quantitative
Approach. Second Edition. Morgan Kaufman.
1996. pp. 221-354.

[6] Anne P. Scott, Kevin P. Burkhart, Ashok Kumar,
Richard M. Blumberg, and Gregory L. Ranson,
Four-Way Superscalar PA-RISC Processors.
Hewlett-Packard Journal 48(4). August 1997.

[7] PowerPC 604 Risc Microprocessor,
http://www.chips.ibm.com/products/ppc/DataSheet
s/604/604-180.html. June 1997.

[8] PentiumPro processor dynamic execution,
http://pentium.intel.com/procs/ppro/info/dynexec.h
tm. April 1997.

[9] B. Ramakrishna Rau and Joseph H. A. Fisher,
Instruction-Level Parallel Processing: History,
Overview, and Perspective, Journal of
Supercomputing 7(1/2). 1993.

[10] William Press, Saul Teukolsky, William
Vetterling, and Brian Flannery, Numerical Recipes
in C: The Art of Scientific Computing. Second
Edition. Cambridge University Press, Cambridge,
United Kingdom. 1992. pp. 656-706.

[11] Raj Jain, The Art of Computer Systems
Performance Analysis. John Wiley and Sons, New
York, New York. 1991. pp. 183-186.

[12] Russell Langley, Practical Statistics Simply
Explained. Dover, New York, New York. 1970.
pp. 51-88.

Appendix
The lmbench 2.0 benchmark API is specified, with
descriptions of the timing and reporting functions. In
addition, a brief tutorial on constructing benchmarks
using lmbench 2.0 is included. Please see the lmbench
2.0 release for the complete sources and
documentation.

lmbench API
BENCH(loop_body, enough);

This macro is the standard interface to lmbench
2.0’s timing subsystem. It repeats the experiment
TRIES times and reports the median value, unless
enough is larger than 100milli-seconds. It uses the
macro BENCH1() to run each experiment. If
enough is non-zero, the experiment must run for
at least enough micro-seconds.

BENCH1(loop_body, enough);
BENCH1() is the heart of the benchmarking
system. It automatically calculates enough and
actually benchmarks loop_body . It ensures that
each experiment is run long enough that the timing
errors are minimized. Environment variables
ENOUGH, TIMING_O, and LOOP_O affect the
initialization of the timing parameters.

uint64 get_n();
Returns the number of times loop_body was
executed during the timing interval.

void milli(char *s, uint64 n);
Print out the time per operation in milliseconds. n
is passed as a parameter because each
loop_body could contain several instantiations
of the operation, and there has to be a way to
adjust the parameter.

void micro(char *s, uint64 n);
Print out the time per operation in microseconds.

void nano(char *s, uint64 n);
Print out the time per operation in nanoseconds.

void mb(uint64 bytes);
Print out the bandwidth in megabytes per second.

void kb(uint64 bytes);
Print out the bandwidth in kilobytes per second.

Tutorial
Creating benchmarks using the lmbench 2.0 timing
harness is easy. There are two attributes that are most
critical for performance, latency and bandwidth, and
lmbench 2.0’s timing harness makes it easy to measure
and report results for both.

The timing harness can be used to quickly create
accurate performance measurements for a wide range
of features and applications. For example, if a signal
processing application needs a fast FFT routine, the
programmer could take several implementations,
quickly benchmark them, and choose the fastest.
Alternatively, the program could include a library of
FFT routines and automatically choose the fastest
based on the routine’s performance on the particular
hardware.

There are a number of factors to consider when
building benchmarks. The most important thing to

understand is what, exactly, you are trying to measure.
If you are trying to find out how long it takes to
generate a pseudo-random number, multiply two
500x500 matrices, or copy 1MByte, then lmbench can
help you accurately measure and report that
information quickly. You should also understand the
conditions under which you would like to measure the
performance. For example, if you want to know how
long it takes to copy 4KBytes, then you should
understand whether you want to find out how long it
takes to copy 4KBytes from and to the cache, or from
memory to the cache.

It is useful to form a hypothesis about the feature being
measured. Using previously gathered information, it
may be possible to accurately predict the performance.
Then, build the benchmark, measure the performance,
and test the hypothesis. If the hypothesis is wrong, you
will have learned something new.

Measuring latency
Latency is usually important for frequently executed
short operations, such as memory accesses. Since it is
so easy to measure latency using lmbench 2.0, it
becomes possible to quickly answer questions that
arise during system design. For example, simulators
may use random numbers frequently, so random
number generator performance may be important to
overall simulator performance. It takes a few minutes
and a few lines of code to measure the performance of
a random number generator:

1 #include “bench.h”
2 int
3 main(int argc, char *argv[])
4 {
5 putenv(“LOOP_O=0.0”);
6 BENCH(lrand48(), 0);
7 micro(“lrand48()”, get_n());
8 exit(0);
9 }

 Line 1 includes the lmbench header, which contains
the macros, type definitions, and function declarations
for lmbench. Line 5 sets the environment variable
LOOP_O to 0.0 so lmbench won’t waste time
calculating the negligible loop overhead. Line 6 uses
the BENCH() macro to benchmark the lrand48()
function. Since the BENCH() parameter enough is
0, lmbench will automatically calculate the necessary
timing duration. Line 7 uses micro() to report
lrand48() ’s performance in micro-seconds.

Measuring bandwidth
The other major component of system performance is
bandwidth, which is of primary importance while
moving large chunks of data. The mechanics of

measuring bandwidth are very similar to those for
measuring latency. In many cases the only difference
is the function used to report the results.

For example, bcopy() is the traditional C-library
routine for copying data. It is often heavily optimized
because it can measurably affect overall system
performance in some commercial benchmarks. A
simple benchmark to measure bcopy() performance
might look like:

1 #include “bench.h”
2 #define M (1024*1024)
3 int
4 main(int argc, char *argv[])
5 {
6 char *a = malloc(M);
7 char *b = malloc(M);
8 putenv(“LOOP_O=0.0”);
9 BENCH(bcopy(a,b,M), 0);
10 mb(M * get_n());
11 exit(0);
12 }

Lines 6 and 7 allocate two 1MByte chunks of memory.
Line 9 benchmarks bcopy() ’s performance while
copying 1MByte of data from chunk a to chunk b.
Line 10 reports the bandwidth in megabytes per
second; during the benchmark timing interval
bcopy() copied M*get_n() bytes.

There are some problems with this particular
benchmark because of caching effects when the
memory cache is large. Since the bcopy() will be
repeated several times during benchmarking, the data
is more likely to be in the cache, so the benchmark will
measure bcopy() performance for cached data. If
one is trying to measure bcopy() performance for
non-cached data, this benchmark would need to be
modified. For example, allocating larger segments of
memory (e.g. 16MBytes) and only copying 1MByte at
a time would increase the likelihood of measuring
cold-cache results. The modified benchmark would
look like:

1 #include “bench.h”
2 #define N 16
3 #define M (1024*1024)
4 int
5 main(int argc, char *argv[])
6 {
7 int o = 0;
8 char *a = malloc(M * N);
9 char *b = malloc(M * N);
10 putenv(“LOOP_O=0.0”);
11 BENCH(bcopy(a+o,b+o);
12 o=(o+M)%(N*M);,0);
13 mb(M * get_n());
14 exit(0);
15 }

Line 2 defines a new constant, N, which is the number
of unique segments the benchmark will use. Line 7
defines the offset variable, o, which is used to select
the appropriate segment. Lines 8 and 9 allocate the
memory for the segment. The bcopy() in line 11

copies data from one segment of a to a segment of b.
The offset is updated in line 12 to point to the next
segment, modulo the number of segments.

Statistics
It is important to understand the phenomena being
measured. Some features, such as clock speed, are
constant and variance in the results is caused by
experimental noise. Other features, such as context
switch times or disk I/O, have intrinsic variance.

The minimum result may be used in place of the
median result in some circumstances. For example,
when measuring memory latency as a function of
actively used memory size, the median result would
usually be used because of the variance added by
caching effects. However, when determining the cache
size, the minimum result might be used.

Special care must be taken when subtracting two
measurements, which is usually done when subtracting
overhead from an operation. The error in the
subtracted result will be larger than the error in the
joint measurement since the error in the overhead
measurement must be added to the joint error. Also,
the subtracted result is smaller so the percentage error
has increased. If the overhead is a reasonable fraction
of the total measurement, then the error in the result
can be significant.

Common pitfalls
Sometimes benchmarks measure effects other than the
intended result. There are many ways to make subtle,
or even egregious, mistakes in benchmark design.
Two common mistakes are measuring partial
operations or measuring the wrong operation. Also,
think about other factors that can affect the results,
such as: caching effects, physical page placement and
its effect on direct-mapped caches, process scheduling
and cache-stealing in multiprocessors.

Measuring partial operations

Measure the whole operation, not just part of it. If you
don’t measure the whole operation you can sometimes
miss significant features. For example, it is generally
accepted that mmap is faster than read to read a file.
If you measure the time to read a file without including
the open , close , and mmap overhead, then mmap
will usually appear to be faster than read . However,
setting up the mapping is not free and some operating
systems, such as Sun’s (the origin of mmap), have
optimized read so it is sometimes faster than mmap.
Unless mmap is included in the benchmark, its

overhead will not be included in the total cost. When
comparing the sequence open/mmap/bcopy/
close with open/read/close , read is faster
than mmap for small files, typically under 32K. In
addition, not all operating systems provide read-ahead
for mmap‘ed files, which can result in a 2-3x
performance penalty for mmap during large sequential
read accesses.

Measuring the wrong operation

Measuring the operation you intend to measure.
Caches and caching effects are the usual source of
problems. It is very important to decide whether you
want to measure warm-cache or cold-cache
performance. In general it is appropriate and easier to
measure warm cache performance. There are other
ways to measure the wrong operation, such as allowing
overhead to dominate the measurement. For example,
mhz demonstrates lmbench’s ability to measure very
short operations, but we limited the loop overhead to a
few percent by repeating each operation many times
within the measurement loop. Otherwise the loop
overhead could have been the dominant feature in the
measurement loop.

Multi-process and networking benchmarks are
especially prone to errors. Obscure aspects of system
design can profoundly impact the benchmark. For
example, the behavior of common TCP
implementations during connection establishment
limited the rate clients generated requests and
completely invalidated some common HTTP
benchmarks because the HTTP clients only generated
requests as fast as the server could service them. The
benchmarks never measured server performance
during server overload, when the server spends all of
its time acknowledging TCP connections.

For more information
There are a variety of sources of information on
statistics, benchmarking, and system behavior.
[5,10,11,12] are a good starting point for information.
The lmbench documentation and man pages can help
get you started. Also, the lmbench micro-benchmarks
are a rich set of examples to use when writing your
own benchmarks. We hope that lmbench will become
a standard element of programmers’ toolboxes.

